Ir al contenido principal

Energía y Momentum

Mecánica

Guía 12: Energía y Momentum

1.- Energía y Momentum

  1. Dos bloques de masa $M$ y $3M$ ($M=250\,\mbf g$) se colocan sobre una superficie horizontal sin roce. Un resorte sin masa de constante $k=300\,\mbf{N/m}$ se coloca comprimido entre ellos. En cierto instante de tiempo se corta la cuerda que los mantiene unidos luego de lo cual, el bloque $3M$ se mueve hacia la derecha con rapidez de $2.00\,\mbf{m/s}$.
    Bolques con resorte comprimido entremedio
    Determine
    1. La velocidad $\vec v_{_M}$ del bloque de masa $M$.
    2. La energía del sistema después que se cortó la cuerda, cuando el resorte volvió a su largo natural.
    3. La compresión del resorte antes del corte de la cuerda.

  2. En un reactor nuclear un neutrón choca elásticamente contra un núcleo de carbono inicialmente en reposo. Considere la masa del núcleo de carbono igual a 12 veces la masa del neutrón. Considerando que todo el movimiento ocurre en solo una dirección, obtenga
    1. Las velocidades tras el choque, tanto del neutrón $\vec v_{n^\circ}$, como del núcleo de carbono $\vec v_{\ce{^{12}C}}$ en función de la velocidad inicial del neutrón $\vec v$.
    2. La fracción de energía cinética transferida desde el neutrón al núcleo durante el choque, es decir, la energía después del choque del núcleo dividida entre la energía inicial del neutrón.
    3. Si la energía cinética inicial del neutrón es $1{,}60\times 10^{-13}\,\mbf J$, encuentre su energía cinética final y la del núcleo de carbono.

    Indicación: La masa del neutrón es $m_n=1{,}67\times 10^{-27}\,\mbf{kg}$.

  3. La pista de la figura no tiene roce. Un bloque de masa $m_1=6{,}00\,\mbf{kg}$ se deja caer desde una altura $H=5{,}00\,\mbf{m}$. Al llegar a la parte llana choca elásticamente contra un bloque de masa $m_2=12{,}0\,\mbf{kg}$, inicialmente en reposo.
    Bala incrustada en bloque
    Determine
    1. La velocidad de $m_1$ justo antes de impactar contra $m_2$.
    2. La velocidad de cada bloque justo después del choque.
    3. La altura que alcanza el $m_1$ tras el choque.

  4. En el péndulo balístico, una bala de $10\,\mbf g$ se dispara con velocidad de $v=250\,\mbf{m/s}$ hacia un bloque de $M=1{,}3\,\mbf{kg}$ que se encuentra inicialmente en reposo colgando mediante una cuerda de largo $l=0{,}50\,\mbf m$. Si el impacto se puede modelar como un choque completamente inelástico.
    Bala incrustada en bloque
    Obtenga
    1. La rapidez con que el bloque y la masa se mueven justo tras el impacto.
    2. La altura que alcanza el bloque.
    3. Si se cambia el material del cual está hecho el bloque $M$ y ahora el choque fuese completamente elástico ¿Cuáles serían las velocidades de la bala y el bloque tras el impacto?

  5. Una masa $m=3{,}50\,\mbf{kg}$ se encuentra a una altura $H=1{,}50\,\mbf m$ del suelo, inicialmente en reposo, manteniendo comprimido un resorte de constante elástica $k=150\,\mbf{N/m}$ una longitud $\Delta l=25{,}0\,\mbf{cm}$. Se deja elongar el resorte de modo que el bloque $m$ desciende y choca contra otro bloque de masa $M=4{,}00\,\mbf{kg}$ inicialmente en reposo. Después de la colisión, el bloque $M$ se mueve hacia la derecha hasta encontrarse con un plano inclinado de ángulo $\alpha =30^\circ$, rugoso cuyo coeficiente de roce cinético es $\mu _{c}=0{,}35$.
    Bala incrustada en bloque
    Calcule
    1. La rapidez con la cual el bloque $m$ se despega del resorte.
    2. La rapidez de impacto del bloque $m$ contra el bloque $M$.
    3. La rapidez del bloque $M$ después del choque si tras el impacto el bloque $m$ alcanza el reposo.
    4. La altura máxima que alcanza el bloque $M$.


Respuestas

1.- Energía y Momentum

    1. $\vec v_M=6{,}00\,\mbf{m/s}$ hacia la izquierda.
    2. $E_f=6{,}00\,\mbf J$.
    3. $\Delta l=0{,}200\,\mbf m$.

    1. $\vec v_{n^\circ}=-\frac{11}{13}\vec v$, $\vec v_{\ce{^{12}C}}=\frac{2}{13}\vec v$.
    2. $\frac{\Delta K_{\ce{^{12}C}}}{K_i}=\frac{48}{169}=0{,}28$. Cerca de un $28\%$ de la energía cinética inicial del neutrón fue transferida al núcleo de carbono.
    3. $K_{n^\circ}=1.15\times 10^{-13}\,\mbf J$, $K_{\ce{^{12}C}}=4{,}54\times 10^{-14}\,\mbf J$.

    1. $\vec v_{1\, i}=9{,}90\,\mbf{m/s}$ hacia la derecha.
    2. $\vec v_{1\, f}=3{,}3\,\mbf{m/s}$ hacia la izquierda. $\vec v_{2\, f}=6{,}6\,\mbf{m/s}$ hacia la derecha.
    3. $h_f=0{,}56\,\mbf m$.

    1. $\vec V=1{,}9\,\mbf{m/s}$ hacia la derecha.
    2. $h=0{,}18\,\mbf m$.
    3. $\vec V_m=-246\,\mbf{m/s}=-2{,}5\times 10^2\,\mbf{m/s}$ hacia la izquierda. $\vec V_M=3{,}8\,\mbf{m/s}$ hacia la derecha.

    1. $v_m=1{,}64\,\mbf{m/s}$.
    2. $v_m=5{,}66\,\mbf{m/s}$.
    3. $v_M=4{,}95\,\mbf{m/s}$.
    4. $h=0{,}78\,\mbf m$

Comentarios

Entradas populares

Guía 01: Sistemas de unidades, propiedades de los fluidos y viscosidad

Esta es la primera guía de Mecánica de Fluidos. Aquí te presentamos algunos ejercicios de unidades de medidas del «Sistema Inglés» y del SI, algunos ejercicios sobre densidad y peso específico, y algunos problemas de viscosidad. La miel es un fluido con alta viscosidad, de ahí su dificultad para fluir. Creditos: Coralpceb bajo licencia CC BY-NC-SA 2.0 . Índice Sistemas de unidades Propiedades de los fluidos Viscosidad Constantes, datos y factores de conversión Respuestas Sistemas de unidades Exprese las cantidades en las unidades que se indican. $14{,}34\,\mt{ft^2}$ en $\mt{in^2}$, $\mt{mi^2}$ y $\mt{m^2}$. $28{,}0\,\mt{oz}$ en $\mt{lb_m}$, $\mt{slug}$ y $\mt{g}$. $22{,}49\,\mt{lb_f}$ en $\mt{N}$ y $\mt{dyn}$. $1{,}000\,\mt{atm}$ en $\mt{Pa}$, $\mt{bar}$, $\mt{psi}$ y $\mt{psf}$. $1{,}29\,\mt{kg/m^3}$ en $\mt{lb_m/ft^3}$ y $\mt{slug/ft^3}$. $1\,475{,}2\,\mt{ft\cdot lb_f/s}$ en $\mt{W}$ y $\mt{erg/s}$. Transfo...

Guía 04: Fuerzas de los fluidos estáticos sobre superficies planas

Ahora es el turno de resolver problemas que involucren la fuerza de un fluido estático sobre una superficie plana. Deberás calcular la fuerza normal de un fluido, el momento de la fuerza y el centro de presión. Además deberás determinar las condiciones de equilibrio que debe satisfacer una compuerta para permanecer cerrada. Las compuertas de las esclusas de Gatún se abren para un crucero entrante desde el lado del Caribe del canal de Panamá. Estás compuertas deben resistir las fuerzas gigantescas que ejerce el agua contenida en las esclusas. Creditos: Stan Shebs bajo licencia CC BY-SA 3.0 . Índice Fuerzas y momentos Constantes, datos y factores de conversión Respuestas Fuerzas y momentos Determine la fuerza resultante y su punto de aplicación debida a la acción del agua sobre una superficie plana rectangular paralela a la vertical, de altura $AB = 2{,}50\,\mt{m}$ y de ancho $1{,}50\,\mt{m}$, donde el punto $A$, el más cercano a la superficie del...

Guía 03: Ecuación general de la estática de fluidos

A continuación es el turno de resolver problemas sobre la Ecuación general de la estática de fluidos , la ecuación que describe la variación de la presión en un fluido ubicado en una región con campo gravitacional no nulo. Deberás encontrar la presión en fluidos e interfases entre fluidos a distintas profundidades. Un submarino es una embarcación diseñada para navegar bajo la superficie del agua. Su casco debe resistir presiones gigantescas producto del aumento de la presión con la profundidad. En la imagen, el Submarino General Carrera (SS-22) de la Armada de Chile. Creditos: Wikimedia Commons bajo licencia CC BY-SA 4.0 . Índice Presión Constantes, datos y factores de conversión Respuestas Presión Encuentre la presión en un punto ubicado $150\, \mt{m}$ debajo de la superficie del mar. Considere que la densidad del agua de mar es uniforme y de valor igual a $1{,}03\times 10^3\, \mt{kg/m^3}$. Un experimentador desea determinar la densidad de ...