Ir al contenido principal

Energía y Momentum

Mecánica

Guía 12: Energía y Momentum

1.- Energía y Momentum

  1. Dos bloques de masa $M$ y $3M$ ($M=250\,\mbf g$) se colocan sobre una superficie horizontal sin roce. Un resorte sin masa de constante $k=300\,\mbf{N/m}$ se coloca comprimido entre ellos. En cierto instante de tiempo se corta la cuerda que los mantiene unidos luego de lo cual, el bloque $3M$ se mueve hacia la derecha con rapidez de $2.00\,\mbf{m/s}$.
    Bolques con resorte comprimido entremedio
    Determine
    1. La velocidad $\vec v_{_M}$ del bloque de masa $M$.
    2. La energía del sistema después que se cortó la cuerda, cuando el resorte volvió a su largo natural.
    3. La compresión del resorte antes del corte de la cuerda.

  2. En un reactor nuclear un neutrón choca elásticamente contra un núcleo de carbono inicialmente en reposo. Considere la masa del núcleo de carbono igual a 12 veces la masa del neutrón. Considerando que todo el movimiento ocurre en solo una dirección, obtenga
    1. Las velocidades tras el choque, tanto del neutrón $\vec v_{n^\circ}$, como del núcleo de carbono $\vec v_{\ce{^{12}C}}$ en función de la velocidad inicial del neutrón $\vec v$.
    2. La fracción de energía cinética transferida desde el neutrón al núcleo durante el choque, es decir, la energía después del choque del núcleo dividida entre la energía inicial del neutrón.
    3. Si la energía cinética inicial del neutrón es $1{,}60\times 10^{-13}\,\mbf J$, encuentre su energía cinética final y la del núcleo de carbono.

    Indicación: La masa del neutrón es $m_n=1{,}67\times 10^{-27}\,\mbf{kg}$.

  3. La pista de la figura no tiene roce. Un bloque de masa $m_1=6{,}00\,\mbf{kg}$ se deja caer desde una altura $H=5{,}00\,\mbf{m}$. Al llegar a la parte llana choca elásticamente contra un bloque de masa $m_2=12{,}0\,\mbf{kg}$, inicialmente en reposo.
    Bala incrustada en bloque
    Determine
    1. La velocidad de $m_1$ justo antes de impactar contra $m_2$.
    2. La velocidad de cada bloque justo después del choque.
    3. La altura que alcanza el $m_1$ tras el choque.

  4. En el péndulo balístico, una bala de $10\,\mbf g$ se dispara con velocidad de $v=250\,\mbf{m/s}$ hacia un bloque de $M=1{,}3\,\mbf{kg}$ que se encuentra inicialmente en reposo colgando mediante una cuerda de largo $l=0{,}50\,\mbf m$. Si el impacto se puede modelar como un choque completamente inelástico.
    Bala incrustada en bloque
    Obtenga
    1. La rapidez con que el bloque y la masa se mueven justo tras el impacto.
    2. La altura que alcanza el bloque.
    3. Si se cambia el material del cual está hecho el bloque $M$ y ahora el choque fuese completamente elástico ¿Cuáles serían las velocidades de la bala y el bloque tras el impacto?

  5. Una masa $m=3{,}50\,\mbf{kg}$ se encuentra a una altura $H=1{,}50\,\mbf m$ del suelo, inicialmente en reposo, manteniendo comprimido un resorte de constante elástica $k=150\,\mbf{N/m}$ una longitud $\Delta l=25{,}0\,\mbf{cm}$. Se deja elongar el resorte de modo que el bloque $m$ desciende y choca contra otro bloque de masa $M=4{,}00\,\mbf{kg}$ inicialmente en reposo. Después de la colisión, el bloque $M$ se mueve hacia la derecha hasta encontrarse con un plano inclinado de ángulo $\alpha =30^\circ$, rugoso cuyo coeficiente de roce cinético es $\mu _{c}=0{,}35$.
    Bala incrustada en bloque
    Calcule
    1. La rapidez con la cual el bloque $m$ se despega del resorte.
    2. La rapidez de impacto del bloque $m$ contra el bloque $M$.
    3. La rapidez del bloque $M$ después del choque si tras el impacto el bloque $m$ alcanza el reposo.
    4. La altura máxima que alcanza el bloque $M$.


Respuestas

1.- Energía y Momentum

    1. $\vec v_M=6{,}00\,\mbf{m/s}$ hacia la izquierda.
    2. $E_f=6{,}00\,\mbf J$.
    3. $\Delta l=0{,}200\,\mbf m$.

    1. $\vec v_{n^\circ}=-\frac{11}{13}\vec v$, $\vec v_{\ce{^{12}C}}=\frac{2}{13}\vec v$.
    2. $\frac{\Delta K_{\ce{^{12}C}}}{K_i}=\frac{48}{169}=0{,}28$. Cerca de un $28\%$ de la energía cinética inicial del neutrón fue transferida al núcleo de carbono.
    3. $K_{n^\circ}=1.15\times 10^{-13}\,\mbf J$, $K_{\ce{^{12}C}}=4{,}54\times 10^{-14}\,\mbf J$.

    1. $\vec v_{1\, i}=9{,}90\,\mbf{m/s}$ hacia la derecha.
    2. $\vec v_{1\, f}=3{,}3\,\mbf{m/s}$ hacia la izquierda. $\vec v_{2\, f}=6{,}6\,\mbf{m/s}$ hacia la derecha.
    3. $h_f=0{,}56\,\mbf m$.

    1. $\vec V=1{,}9\,\mbf{m/s}$ hacia la derecha.
    2. $h=0{,}18\,\mbf m$.
    3. $\vec V_m=-246\,\mbf{m/s}=-2{,}5\times 10^2\,\mbf{m/s}$ hacia la izquierda. $\vec V_M=3{,}8\,\mbf{m/s}$ hacia la derecha.

    1. $v_m=1{,}64\,\mbf{m/s}$.
    2. $v_m=5{,}66\,\mbf{m/s}$.
    3. $v_M=4{,}95\,\mbf{m/s}$.
    4. $h=0{,}78\,\mbf m$

Comentarios

Entradas populares

Mecánica: Momentum Lineal

En esta guía aplicaremos el teorema del Impulso y el Momentum Lineal y su corolario, la Conservación del Momentum Lineal. Visualización de un evento de colisión registrado por el Experimento ATLAS el 5 de mayo de 2025. Con una energía de $6{,}8\,\mbf{TeV}$ por haz, la imagen representa los primeros haces estables de protones del año 2025 entregados por el Gran Colisionador de Hadrones (LHC) a ATLAS . Los experimentos de física de partículas rutinariamente utilizan la conservación del momentum lineal para reconstruir las colisiones. Créditos: ATLAS Experiment © 2025 CERN bajo licencia CERN Audiovisual Media. Índice Impulso y Momentum Lineal Colisiones Centro de masa Respuestas Impulso y Momentum Lineal Un balón de fútbol de masa $m=450\, \mbf g$, inicialmente en resposo, es pateado por Cristiano Ronaldo ( CR7 ) con máxima potencia de modo que alcanza $119\, \mbf{km/h}$. Determine El momentum del balón tras el disparo. El...

Guía 09: Campo magnético

Es el turno de investigar las fuentes del campo magnético. En esta guía deberás encontrar el campo magnético que generan distintas configuraciones de corrientes eléctricas. Las cargas eléctricas en movimiento generan magnetismo. El mundo moderno está lleno de aplicaciones de este fenómeno como es el caso de los electroimanes, imanes que se pueden manejar a voluntad según la corriente eléctrica que circula por su embobinado. En la imagen se observa un electroiman casero formado por un embobinado en forma de solenoide (el cable enrrollado), un núcleo de hierro (el clavo) utilizado para amplificar el campo magnético, y una fuente de voltaje (la bateria) que establece la corriente en el embobinado. Creditos: Gina Clifford bajo licencia CC BY-SA 2.0 . Índice Campo Magnético Ley de Biot-Savart Ley de Ampère Respuestas Campo Magnético A partir de los siguientes campos magnéticos, determine dónde se ubican y en qué dirección avanzan las corrientes eléctr...

Mecánica: Trabajo y Energía

En esta guía revisaremos aplicaciones del Teorema del trabajo y la energía mecánica. La Blue Fire Megacoaster del Europa-Park en Rust, Alemania es una montaña rusa de acero en que el carro es capaz de alcanzar los $100\,\mbf{km/h}$ desde el reposo en tan solo $2{,}5\,\mbf s$. El movimiento de los carros de montaña rusa suele analizarse con consideraciones de energía. Créditos: Fritz Spitzkohl bajo licencia CC BY-SA 3.0. Índice Trabajo y energía cinética Trabajo y energía mecánica Respuestas Trabajo y energía cinética Un cuerpo de $700\, \mbf{g}$ se desliza $120\, \mbf{cm}$ a lo largo de una mesa horizontal ¿Cuánto cambia la energía cinética del cuerpo si el coeficiente de fricción entre la mesa y el cuerpo es de $0{,}20$? Una masa de $2{,}0\, \mbf{kg}$ cae $400\, \mbf{cm}$ ¿Cuánto trabajo fue realizado sobre la masa por la fuerza de gravedad? Si se trata de una caída libre, es decir, si no hay otras fuerzas que actú...