Ir al contenido principal

Energía y Momentum

Mecánica

Guía 12: Energía y Momentum

1.- Energía y Momentum

  1. Dos bloques de masa $M$ y $3M$ ($M=250\,\mbf g$) se colocan sobre una superficie horizontal sin roce. Un resorte sin masa de constante $k=300\,\mbf{N/m}$ se coloca comprimido entre ellos. En cierto instante de tiempo se corta la cuerda que los mantiene unidos luego de lo cual, el bloque $3M$ se mueve hacia la derecha con rapidez de $2.00\,\mbf{m/s}$.
    Bolques con resorte comprimido entremedio
    Determine
    1. La velocidad $\vec v_{_M}$ del bloque de masa $M$.
    2. La energía del sistema después que se cortó la cuerda, cuando el resorte volvió a su largo natural.
    3. La compresión del resorte antes del corte de la cuerda.

  2. En un reactor nuclear un neutrón choca elásticamente contra un núcleo de carbono inicialmente en reposo. Considere la masa del núcleo de carbono igual a 12 veces la masa del neutrón. Considerando que todo el movimiento ocurre en solo una dirección, obtenga
    1. Las velocidades tras el choque, tanto del neutrón $\vec v_{n^\circ}$, como del núcleo de carbono $\vec v_{\ce{^{12}C}}$ en función de la velocidad inicial del neutrón $\vec v$.
    2. La fracción de energía cinética transferida desde el neutrón al núcleo durante el choque, es decir, la energía después del choque del núcleo dividida entre la energía inicial del neutrón.
    3. Si la energía cinética inicial del neutrón es $1{,}60\times 10^{-13}\,\mbf J$, encuentre su energía cinética final y la del núcleo de carbono.

    Indicación: La masa del neutrón es $m_n=1{,}67\times 10^{-27}\,\mbf{kg}$.

  3. La pista de la figura no tiene roce. Un bloque de masa $m_1=6{,}00\,\mbf{kg}$ se deja caer desde una altura $H=5{,}00\,\mbf{m}$. Al llegar a la parte llana choca elásticamente contra un bloque de masa $m_2=12{,}0\,\mbf{kg}$, inicialmente en reposo.
    Bala incrustada en bloque
    Determine
    1. La velocidad de $m_1$ justo antes de impactar contra $m_2$.
    2. La velocidad de cada bloque justo después del choque.
    3. La altura que alcanza el $m_1$ tras el choque.

  4. En el péndulo balístico, una bala de $10\,\mbf g$ se dispara con velocidad de $v=250\,\mbf{m/s}$ hacia un bloque de $M=1{,}3\,\mbf{kg}$ que se encuentra inicialmente en reposo colgando mediante una cuerda de largo $l=0{,}50\,\mbf m$. Si el impacto se puede modelar como un choque completamente inelástico.
    Bala incrustada en bloque
    Obtenga
    1. La rapidez con que el bloque y la masa se mueven justo tras el impacto.
    2. La altura que alcanza el bloque.
    3. Si se cambia el material del cual está hecho el bloque $M$ y ahora el choque fuese completamente elástico ¿Cuáles serían las velocidades de la bala y el bloque tras el impacto?

  5. Una masa $m=3{,}50\,\mbf{kg}$ se encuentra a una altura $H=1{,}50\,\mbf m$ del suelo, inicialmente en reposo, manteniendo comprimido un resorte de constante elástica $k=150\,\mbf{N/m}$ una longitud $\Delta l=25{,}0\,\mbf{cm}$. Se deja elongar el resorte de modo que el bloque $m$ desciende y choca contra otro bloque de masa $M=4{,}00\,\mbf{kg}$ inicialmente en reposo. Después de la colisión, el bloque $M$ se mueve hacia la derecha hasta encontrarse con un plano inclinado de ángulo $\alpha =30^\circ$, rugoso cuyo coeficiente de roce cinético es $\mu _{c}=0{,}35$.
    Bala incrustada en bloque
    Calcule
    1. La rapidez con la cual el bloque $m$ se despega del resorte.
    2. La rapidez de impacto del bloque $m$ contra el bloque $M$.
    3. La rapidez del bloque $M$ después del choque si tras el impacto el bloque $m$ alcanza el reposo.
    4. La altura máxima que alcanza el bloque $M$.


Respuestas

1.- Energía y Momentum

    1. $\vec v_M=6{,}00\,\mbf{m/s}$ hacia la izquierda.
    2. $E_f=6{,}00\,\mbf J$.
    3. $\Delta l=0{,}200\,\mbf m$.

    1. $\vec v_{n^\circ}=-\frac{11}{13}\vec v$, $\vec v_{\ce{^{12}C}}=\frac{2}{13}\vec v$.
    2. $\frac{\Delta K_{\ce{^{12}C}}}{K_i}=\frac{48}{169}=0{,}28$. Cerca de un $28\%$ de la energía cinética inicial del neutrón fue transferida al núcleo de carbono.
    3. $K_{n^\circ}=1.15\times 10^{-13}\,\mbf J$, $K_{\ce{^{12}C}}=4{,}54\times 10^{-14}\,\mbf J$.

    1. $\vec v_{1\, i}=9{,}90\,\mbf{m/s}$ hacia la derecha.
    2. $\vec v_{1\, f}=3{,}3\,\mbf{m/s}$ hacia la izquierda. $\vec v_{2\, f}=6{,}6\,\mbf{m/s}$ hacia la derecha.
    3. $h_f=0{,}56\,\mbf m$.

    1. $\vec V=1{,}9\,\mbf{m/s}$ hacia la derecha.
    2. $h=0{,}18\,\mbf m$.
    3. $\vec V_m=-246\,\mbf{m/s}=-2{,}5\times 10^2\,\mbf{m/s}$ hacia la izquierda. $\vec V_M=3{,}8\,\mbf{m/s}$ hacia la derecha.

    1. $v_m=1{,}64\,\mbf{m/s}$.
    2. $v_m=5{,}66\,\mbf{m/s}$.
    3. $v_M=4{,}95\,\mbf{m/s}$.
    4. $h=0{,}78\,\mbf m$

Comentarios

Entradas populares

Mecánica: Movimiento Parabólico y Movimiento Circunferencial

Índice Movimiento Parabólico Movimiento Circunferencial Respuestas Movimiento Parabólico Un proyectil se lanza con una velocidad de $200\ \mbf{m/s}$ formando un ángulo de $30{,}0^\circ$ con la horizontal. Calcule a los $8{,}0\ \mbf s$ de su lanzamiento: El vector velocidad y el ángulo que forma ésta con el eje vertical . El desplazamiento total. En un duelo del lejano Oeste un pistolero dispara horizontalmente una bala con velocidad de $200\ \mbf{m/s}$ desde una altura de $1{,}25\ \mbf{m}$. Calcule la distancia mínima entre los adversarios, para que la presunta víctima no sea alcanzada. Indicación: La bala realiza movimiento parabólico, de modo que en algún momento choca con el suelo y así el adversario no es alcanzado. Desde una altura de $10\ \mbf m$ sobre el suelo, se lanza horizontalmente un objeto con velocidad de $20\ \mbf{m/s}$. Determinar: La distancia horizontal a la que toc

Mecánica: Leyes de Newton

Índice Fuerza, masa y aceleración Aplicaciones de las leyes de Newton Respuestas Fuerza, masa y aceleración Sobre una masa de $7{,}00\,\mbf{kg}$ se aplican las siguientes fuerzas: una fuerza de $10{,}0\,\mbf N$ hacia el Norte, una fuerza de $20{,}0\,\mbf N$ al Este y una fuerza de $30{,}0\,\mbf N$ en dirección $30^\circ$ al Sur del Oeste. Obtenga la aceleración de esta masa. La aceleración de gravedad en la superficie del Sol, en la superficie de la Luna y en la superficie de Marte es, $27{,}9\, g$, $0{,}160\, g$ y $0{,}380\, g$, respectivamente, donde $g$ es la aceleración de gravedad en la superficie de la Tierra ($g=9{,}8\,\mbf{m/s^2}$). Calcule el peso de una persona cuya masa es $60{,}0\,\mbf{kg}$ en la superficie del Sol, la Luna, Marte y la Tierra. En la superficie de Mercurio la aceleración de gravedad es $4{,}00\,\mbf{m/s^2}$. Si una sonda espacial pesa $500\,\mbf N$ en la superficie de Mercurio, encuentre el pes

Termodinámica: Trabajo y Primera Ley de la Termodinámica

Índice Trabajo Primera Ley de la Termodinámica Constantes, datos y factores de conversión Respuestas Trabajo Un cuerpo de $700\ \mt{g}$ se desliza $120\ \mt{cm}$ a lo largo de una mesa horizontal ¿Cuál es el trabajo que realiza la mesa sobre el cuerpo si la fuerza de roce es $1{,}37\ \mt{N}$? Un alambre metálico con módulo de young $Y$, de largo $L$ y sección transversal de área $A$, se estira isotérmica y reversiblemente al aumentar la tracción desde $F_i$ hasta $F_f $. Determine Una expresión para el trabajo realizado por la tracción. El trabajo realizado por la tracción desde $F_i=100\ \mt{lb_f}$ hasta $F_f=150\ \mt{lb_f}$ si el alambre es de cobre de largo $L=5{,}50\ \mt{ft}$ y sección transversal de área $A=6{,}20\times 10^{-3}\ \mt{in^2}$. Una barra de largo $L$, cuya sección transversal es de área $A$ está sujeta a una tensión normal de compresión constante. Si la temperatura de la barra aumenta desde $T_i$ hasta $T