Mis cursos de Física, divulgación científica y más ciencia
Buscar este blog
Guía 07: Conservación de la masa
En esta guía comenzamos a trabajar con fluidos en movimiento. Deberás aplicar el principio de conservación de la masa en problemas de flujo de líquidos en tanques y tuberías.
El caudal o flujo volumétrico es la principal magnitud utilizada para expresar el principio de conservación de la masa en fluidos con densidad (casi) uniforme, como es el caso de los líquidos.
En la imagen, el Río Biobío a su paso entre Concepción, Hualpén y San Pedro de la Paz, a unos pocos kilómetros de su desembocadura. El río Biobío es el segundo más caudaloso de Chile con un caudal medio de unos $950\,\mt{m^3/s}$ al desembocar en el océano Pacífico.
Creditos: Germán Poo-Caamaño bajo licencia CC BY 2.0.
El caudal medio de la sangre que circula en un tramo de un vaso sanguíneo que no presenta ramificaciones es de $1{,}00$ litro por minuto. Si la densidad media de la sangre es $1{,}06\,\mt{kg/l}$
¿Cuánto es el flujo másico que circula por este vaso sanguíneo?
¿Cuál es la velocidad media de la sangre en un tramo en el que vaso tiene un radio interior de $5{,}00\,\mt{mm}$?
¿Y si el radio interior del vaso es de $2{,}50\,\mt{mm}$?
El agua fluye en una manguera de jardín de diámetro interior $1{,}0\,\mt{in}$ a una velocidad de $4{,}0\,\mt{ft/s}$ ¿Con qué velocidad emergerá de un eyector de diámetro $0{,}20\,\mt{in}$?
Una manguera de $2{,}0\,\mt{cm}$ de diámetro por la que fluye agua a una velocidad de $3{,}0\,\mt{m/s}$ termina en un tubo cerrado que tiene 50 orificios pequeños de $2{,}0\,\mt{mm}$ de diámetro ¿Cuál es la velocidad de salida del agua en cada agujero?
Una llave tiene una sección transversal de área $2{,}0\,\mt{cm^2}$ y por ella circula agua con un caudal volumétrico de $12\,\mt{l/min}$. Si un chorro de agua cae verticalmente una altura de $45\,\mt{cm}$, determine la sección inferior del mismo.
Indicación: El agua del chorro realiza caída libre, es decir, cae con aceleración $g$.
Una tubería de $5{,}00\,\mt{cm}$ de radio por la que fluye un líquido con velocidad $v=20{,}0\,\mt{cm/s}$, se divide en dos tuberías de radios $r'=2{,}00\,\mt{cm}$ y $r''=1{,}00\,\mt{cm}$ respectivamente como se muestra en la figura.
Si la velocidad $v''$ es el doble de $v'$, calcule
Las velocidades $v'$ y $v''$.
Los caudales $\dot V'$ y $\dot V''$.
Una tubería de $4{,}00\,\mt{in}$ de radio por la que fluye un líquido con velocidad $v=2{,}00\,\mt{ft/s}$ se divide en tres tuberías de radio $r_1$, $r_2$ y $r_3$ por donde el fluido avanza con rapidez $v_1=0{,}400\,\mt{ft/s}$, $v_2=0{,}800\,\mt{ft/s}$ y $v_3=1{,}20\,\mt{ft/s}$, respectivamente. Si $r_2$ es el doble de $r_1$ y $r_3$ es cuatro veces $r_1$, obtenga
Los radios $r_1$, $r_2$ y $r_3$.
Los caudales $Q_1$, $Q_2$ y $Q_3$.
Un tanque cilíndrico de diámetro $D=2{,}50\,\mt{ft}$ y altura $H=4{,}00\,\mt{ft}$ está siendo llenado con agua mediante una cañería de diámetro $d=5{,}00\,\mt{in}$, como muestra la figura.
En el tiempo $t=0{,}00\,\mt s$ el tanque se encuentra lleno hasta una altura $h=1{,}00\,\mt{ft}$. Calcule
El caudal de agua que está entrando al tanque.
El tiempo que tarda en llenarse el tanque.
La velocidad a la que sube el nivel de agua en el tanque.
El diámetro del tanque de la figura es $D=1{,}20\,\mt m$ y está conectado a una tubería en su parte inferior de diámetro $d=1{,}20\,\mt{cm}$, por donde está saliendo agua con rapidez $v(t)=60{,}0/\sqrt{t+1{,}00}\,\mt{\frac{m}{s}}$, donde $t$ se mide en segundos.
Si en el tiempo $t=0{,}00\,\mt s$ el tanque está lleno de agua hasta una altura $h_0=1{,}50\,\mt{m}$, determine
El caudal que sale del tanque.
La altura de agua en el tanque en un tiempo $t$ cualquiera.
El tiempo que tarda en vaciarse.
Constantes, datos y factores de conversión
Aceleración de gravedad estándar
$g=9{,}81\,\mt{m/s^2}= 32{,}2\,\mt{ft/s^2}$.
Densidad del agua
$\rho_{_{\ce{H2O}}}^{4{,}0^{\circ}\mt C}=1{,}00\times 10^3\,\mt{kg/m^3}=62{,}4\,\mt{lb_m/ft^3}$.
A continuación utilizarás la ecuación de Bernoulli generalizada para considerar bombas y turbinas. Deberás relacionar las alturas, rapideces, presiones de un fluido (líquido) en movimiento con las potencias suministradas y retiradas por las bombas y turbinas. Las bombas y turbinas son dispositivos indispensables para la vida moderna. Por un lado, las bombas se utilizan para proporcionar energía a un fluido para que alcance mayor altura, mayor velocidad o aumente su presión. Por otro lado, las turbinas extraen energía del fluido para convertirla en energía mecánica que después puede ser transformada en otras formas como la electricidad. La imagen muestra el reemplazo de algunas de las turbinas Pelton de la Central de generación hidroléctrica Walchensee (Baviera, Alemania) que es capaz de producir $124\,\mt{MW}$ de potencia eléctrica. Creditos: Voith Siemens Hydro Power bajo licencia CC BY-SA 3.0 . Índice Bombas y turbinas Constantes, datos y factores de conversi...
A continuación es el turno de resolver problemas sobre la Ecuación general de la estática de fluidos , la ecuación que describe la variación de la presión en un fluido ubicado en una región con campo gravitacional no nulo. Deberás encontrar la presión en fluidos e interfases entre fluidos a distintas profundidades. Un submarino es una embarcación diseñada para navegar bajo la superficie del agua. Su casco debe resistir presiones gigantescas producto del aumento de la presión con la profundidad. En la imagen, el Submarino General Carrera (SS-22) de la Armada de Chile. Creditos: Wikimedia Commons bajo licencia CC BY-SA 4.0 . Índice Presión Constantes, datos y factores de conversión Respuestas Presión Encuentre la presión en un punto ubicado $150\, \mt{m}$ debajo de la superficie del mar. Considere que la densidad del agua de mar es uniforme y de valor igual a $1{,}03\times 10^3\, \mt{kg/m^3}$. Un experimentador desea determinar la densidad de ...
En la segunda guía de Mecánica de Fluidos resolverás problemas de presión, tensión superficial y capilaridad. Sin embargo, la ecuación general de la estática de fluidos la revisaremos en la siguiente guía. Un gérrido , conocido como zapatero o patinador, camina sobre la superficie del agua aprovechando la tensión superficial de ésta. Creditos: Katja Schulz bajo licencia CC BY 2.0 . Índice Presión Tensión superficial y capilaridad Constantes, datos y factores de conversión Respuestas Presión Las suelas de los zapatos de una persona de $70{,}0\, \mt{kg}$ tienen un área de $100\, \mt{cm^2}$ cada una ¿Qué presión ejerce la persona sobre el suelo cuando está de pie? Una superficie plana de área $0{,}050\,\mt{in^2}$ se mueve a través de un fluido viscoso en una región donde la presión es $2{,}2\times10^3\,\mt{lb/ft^2}$ y el esfuerzo cortante es de $0{,}72\times10^3\,\mt{lb/ft^2}$. Calcule La magnitud de la fuerza total sobre la superficie....
Comentarios
Publicar un comentario