Mis cursos de Física, divulgación científica y más ciencia
Buscar este blog
Guía 07: Conservación de la masa
En esta guía comenzamos a trabajar con fluidos en movimiento. Deberás aplicar el principio de conservación de la masa en problemas de flujo de líquidos en tanques y tuberías.
El caudal o flujo volumétrico es la principal magnitud utilizada para expresar el principio de conservación de la masa en fluidos con densidad (casi) uniforme, como es el caso de los líquidos.
En la imagen, el Río Biobío a su paso entre Concepción, Hualpén y San Pedro de la Paz, a unos pocos kilómetros de su desembocadura. El río Biobío es el segundo más caudaloso de Chile con un caudal medio de unos $950\,\mt{m^3/s}$ al desembocar en el océano Pacífico.
Creditos: Germán Poo-Caamaño bajo licencia CC BY 2.0.
El caudal medio de la sangre que circula en un tramo de un vaso sanguíneo que no presenta ramificaciones es de $1{,}00$ litro por minuto. Si la densidad media de la sangre es $1{,}06\,\mt{kg/l}$
¿Cuánto es el flujo másico que circula por este vaso sanguíneo?
¿Cuál es la velocidad media de la sangre en un tramo en el que vaso tiene un radio interior de $5{,}00\,\mt{mm}$?
¿Y si el radio interior del vaso es de $2{,}50\,\mt{mm}$?
El agua fluye en una manguera de jardín de diámetro interior $1{,}0\,\mt{in}$ a una velocidad de $4{,}0\,\mt{ft/s}$ ¿Con qué velocidad emergerá de un eyector de diámetro $0{,}20\,\mt{in}$?
Una manguera de $2{,}0\,\mt{cm}$ de diámetro por la que fluye agua a una velocidad de $3{,}0\,\mt{m/s}$ termina en un tubo cerrado que tiene 50 orificios pequeños de $2{,}0\,\mt{mm}$ de diámetro ¿Cuál es la velocidad de salida del agua en cada agujero?
Una llave tiene una sección transversal de área $2{,}0\,\mt{cm^2}$ y por ella circula agua con un caudal volumétrico de $12\,\mt{l/min}$. Si un chorro de agua cae verticalmente una altura de $45\,\mt{cm}$, determine la sección inferior del mismo.
Indicación: El agua del chorro realiza caída libre, es decir, cae con aceleración $g$.
Una tubería de $5{,}00\,\mt{cm}$ de radio por la que fluye un líquido con velocidad $v=20{,}0\,\mt{cm/s}$, se divide en dos tuberías de radios $r'=2{,}00\,\mt{cm}$ y $r''=1{,}00\,\mt{cm}$ respectivamente como se muestra en la figura.
Si la velocidad $v''$ es el doble de $v'$, calcule
Las velocidades $v'$ y $v''$.
Los caudales $\dot V'$ y $\dot V''$.
Una tubería de $4{,}00\,\mt{in}$ de radio por la que fluye un líquido con velocidad $v=2{,}00\,\mt{ft/s}$ se divide en tres tuberías de radio $r_1$, $r_2$ y $r_3$ por donde el fluido avanza con rapidez $v_1=0{,}400\,\mt{ft/s}$, $v_2=0{,}800\,\mt{ft/s}$ y $v_3=1{,}20\,\mt{ft/s}$, respectivamente. Si $r_2$ es el doble de $r_1$ y $r_3$ es cuatro veces $r_1$, obtenga
Los radios $r_1$, $r_2$ y $r_3$.
Los caudales $Q_1$, $Q_2$ y $Q_3$.
Un tanque cilíndrico de diámetro $D=2{,}50\,\mt{ft}$ y altura $H=4{,}00\,\mt{ft}$ está siendo llenado con agua mediante una cañería de diámetro $d=5{,}00\,\mt{in}$, como muestra la figura.
En el tiempo $t=0{,}00\,\mt s$ el tanque se encuentra lleno hasta una altura $h=1{,}00\,\mt{ft}$. Calcule
El caudal de agua que está entrando al tanque.
El tiempo que tarda en llenarse el tanque.
La velocidad a la que sube el nivel de agua en el tanque.
El diámetro del tanque de la figura es $D=1{,}20\,\mt m$ y está conectado a una tubería en su parte inferior de diámetro $d=1{,}20\,\mt{cm}$, por donde está saliendo agua con rapidez $v(t)=60{,}0/\sqrt{t+1{,}00}\,\mt{\frac{m}{s}}$, donde $t$ se mide en segundos.
Si en el tiempo $t=0{,}00\,\mt s$ el tanque está lleno de agua hasta una altura $h_0=1{,}50\,\mt{m}$, determine
El caudal que sale del tanque.
La altura de agua en el tanque en un tiempo $t$ cualquiera.
El tiempo que tarda en vaciarse.
Constantes, datos y factores de conversión
Aceleración de gravedad estándar
$g=9{,}81\,\mt{m/s^2}= 32{,}2\,\mt{ft/s^2}$.
Densidad del agua
$\rho_{_{\ce{H2O}}}^{4{,}0^{\circ}\mt C}=1{,}00\times 10^3\,\mt{kg/m^3}=62{,}4\,\mt{lb_m/ft^3}$.
A continuación utilizarás la ecuación de Bernoulli generalizada para considerar bombas y turbinas. Deberás relacionar las alturas, rapideces, presiones de un fluido (líquido) en movimiento con las potencias suministradas y retiradas por las bombas y turbinas. Las bombas y turbinas son dispositivos indispensables para la vida moderna. Por un lado, las bombas se utilizan para proporcionar energía a un fluido para que alcance mayor altura, mayor velocidad o aumente su presión. Por otro lado, las turbinas extraen energía del fluido para convertirla en energía mecánica que después puede ser transformada en otras formas como la electricidad. La imagen muestra el reemplazo de algunas de las turbinas Pelton de la Central de generación hidroléctrica Walchensee (Baviera, Alemania) que es capaz de producir $124\,\mt{MW}$ de potencia eléctrica. Creditos: Voith Siemens Hydro Power bajo licencia CC BY-SA 3.0 . Índice Bombas y turbinas Constantes, datos y factores de conversi...
A continuación utilizarás la ecuación de Bernoulli generalizada para considerar, además de bombas y turbinas, las pérdidas de energía debido a la fricción del flujo con la tubería y a los accesorios como válvulas y codos, entre otros. Deberás relacionar las alturas, rapideces, presiones de un fluido (líquido) en movimiento con las pérdidas en un sistema de tuberías Los sistemas de tuberías están presente en un amplio rango de industrias que requieren sistemas de transporte o circulación de fluidos. Algunos ejemplos son las industrias (petro)química, minera, de climatización, del agua potable, etc. La imagen muestra una sección del Oleoducto Trans-Alaska que se extiende por casi $1\,300\,\mt{km}$ atravesando Alaska de Norte a Sur. El sistema cuenta con 11 estaciones de bombeo y miles de tuberías alimentadoras a lo largo de toda su extensión. Creditos: Luca Galuzzi - www.galuzzi.it bajo licencia CC BY-SA 2.5 . Índice Conceptos básicos Pérdidas regulares Pérdida...
Es el turno de investigar las fuentes del campo magnético. En esta guía deberás encontrar el campo magnético que generan distintas configuraciones de corrientes eléctricas. Las cargas eléctricas en movimiento generan magnetismo. El mundo moderno está lleno de aplicaciones de este fenómeno como es el caso de los electroimanes, imanes que se pueden manejar a voluntad según la corriente eléctrica que circula por su embobinado. En la imagen se observa un electroiman casero formado por un embobinado en forma de solenoide (el cable enrrollado), un núcleo de hierro (el clavo) utilizado para amplificar el campo magnético, y una fuente de voltaje (la bateria) que establece la corriente en el embobinado. Creditos: Gina Clifford bajo licencia CC BY-SA 2.0 . Índice Campo Magnético Ley de Biot-Savart Ley de Ampère Respuestas Campo Magnético A partir de los siguientes campos magnéticos, determine dónde se ubican y en qué dirección avanzan las corrientes eléctr...
Comentarios
Publicar un comentario