Ir al contenido principal

Guía 08: Fuerza magnética

En esta guía comenzamos el estudio del magnetismo. Aquí deberás calcular la fuerza que realiza el campo magnético sobre cargas eléctricas puntuales en movimiento, y sobre corrientes eléctricas.

El campo magnético realiza fuerza sobre las cargas eléctricas en movimiento. La imagen muestra un tubo de rayos catódicos atrapados en un recorrido circunferencial producto de la fuerza que realiza el campo magnético producido por unas bobinas de Helmholtz. Los rayos catódicos son corrientes de electrones generadas en tubos de vacío que cuando mantienen alguna cantidad residual de gas permiten observar el recorrido de los electrones.
Creditos: Marcin Białek bajo licencia CC BY-SA 4.0.

Fuerza Magnética

  1. Un protón que se mueve formando un ángulo de $23{,}0^{\circ}$ con respecto a un campo magnético de intensidad $2{,}63\,\mathbf{mT}$, experimenta una fuerza magnética de $6{,}48\times 10^{-17}\,\mathbf{N}$. Obtenga la rapidez y la energía cinética del protón.

    Indicación: La masa del protón es $m_{p^+}=1{,}672\times 10^{-27}\,\mbf{kg}$ y su carga eléctrica es $q_{p^+}=e=1{,}602\times 10^{-19}\,\mbf C$.

  2. Un electrón que se mueve en una región donde el campo magnético es uniforme, en un instante de tiempo tiene una velocidad $\vec v=\left(40{,}0\,\hat{\imath}+35{,}0\,\hat{\jmath}\right)\, \mathbf{km/s}$. Si la fuerza que experimenta en ese instante es $\vec F=\left(-4{,}20\,\hat{\imath}+4{,}80\,\hat{\jmath}\right)\, \mathbf{f\,N}$ y $B_{x}=0$, calcule el campo magnético.

    Indicación 1: La magnitud de la carga eléctrica del electrón es $e=1{,}602\times 10^{-19}\,\mbf C$.

    Indicación 2: Recuerde que el prefijo femto es igual a una mil billonésima parte $\mbf{f}=10^{-15}$.

  3. Un electrón ($m_{e^-}=9{,}109\times 10^{-31}\,\mbf{kg}$), cuya energía cinética es $1{,}22\,\mbf{keV}$, está moviendose en una trayectoria circunferencial de radio $24{,}7\,\mbf{cm}$ debido a un campo magnético uniforme. Introduciendo un apropiado sistema de referencia. determine
    1. La velocidad del electrón.
    2. El campo magnético.
    3. La frecuencia de revolución del electrón.
    4. El periodo del movimiento.

    Indicación: En física de partículas se acostumbra a usar, para la energía, la unidad de medida electronvolt ($\mbf{eV}$). Un electronvolt es la energía cinética que gana un electrón al ser acelerado entre dos puntos cuya diferencia de potencial es un volt \begin{equation*} 1\,\mbf{eV}:=1{,}602\times10^{-19}\,\mbf C\times 1\,\mbf V=1{,}602\times10^{-19}\,\mbf J. \end{equation*}

  4. Un espectrómetro de masas es un dispositivo que se utiliza para medir la masa de un ión.

    Un ión de masa $m$ y carga $+q$ se genera en la fuente $F$. El ión es acelerado, por una diferencia de potencial $V$ y enviado hacia una cámara de separación en que un campo magnético $\vec B$ es perpendicular a la trayectoria del ión. Producto del campo magnético, el ión sigue una trayectoria en forma de semicircunferencia, chocando con una placa fotográfica a una distancia $x$ de la rendija de entrada.

    Esquema de un espectrómetro de masas
    En términos de $+q$, $V$, $B$ y $x$, obtenga
    1. La velocidad del ión al entrar en la cámara de separación, si la energía cinética con que sale de la fuente $F$ es despreciable.
    2. La masa del ión.
  5. Un conductor horizontal, en una línea de transmisión, porta una corriente de $5{,}12\,\mathbf{kA}$ de sur a norte. El campo magnético de la Tierra en la vecindad de la línea es $58{,}0\,\mathbf{\mu T}$ y está dirigido hacia el norte e inclinado hacia abajo en $70{,}0^{\circ}$ con respecto de la horizontal. Determine la magnitud y dirección de la fuerza magnética sobre $100\,\mathbf{m}$ del conductor debido al campo magnético de la Tierra.
  6. Por un conductor largo y rígido, que se encuentra a lo largo del eje $x$, circula una corriente de $5{,}0\,\mathbf{A}$ en la dirección $-x$. Si en la región en que se encuentra este conductor hay un campo magnético $\vec B=(3{,}0\,\hat{\imath}+8{,}0\,x^2\,\hat{\jmath})\,\mbf{mT}$, con $x$ en metros. Calcule la fuerza sobre el segmento de $2{,}0\,\mathbf{m}$ del conductor que se encuentra entre $x=1{,}2\,\mathbf{m}$ y $x=3{,}2\,\mathbf{m}$.
  7. En la figura se muestra una espira rígida en forma de triángulo rectángulo isósceles que está inmersa en un campo magnético uniforme $\vec B$, perpendicular a su plano. Se sabe que $B = 0{,}10\,\mbf T$, que el lado menor de la espira mide $L = 30\,\mbf{cm}$ y que es recorrida por una corriente $i = 7{,}0\,\mbf A$.
    Espira triangular inmersa en un campo magnético perpendicular
    1. Determine la magnitud de cada una de las fuerzas magnéticas que actúan en los lados $MN$, $NO$, $OM$ de la espira.
    2. Calcule la magnitud de la fuerza magnética resultante que actúa sobre la espira.

    Indicación: Una espira es conductor por el cual circula una corriente haciendo un recorrido (practicamente) cerrado.

Fuerza de Lorentz

  1. En una región del espacio existe un campo eléctrico de $1{,}50\,\mathbf{kV/m}$ y un campo magnético de $440\,\mathbf{mT}$. Un electrón se desplaza por esta región con velocidad constante hacia la dirección positiva del eje $x$. Si el campo eléctrico es perpendicular al campo magnético, determine
    1. La rapidez $v$ del electrón.
    2. Identifique una de las configuraciones de los campos eléctrico y magnético que permiten esta situación, es decir, indique la dirección en que estos deben apuntar.

    Indicación: ¿Se acuerda de mecánica? ¿Qué significa que una partícula se mueva con velocidad constante? ¿Cómo debe ser la fuerza neta sobre la partícula?

  2. En un instante de tiempo, un electrón se mueve con velocidad de $(12{,}0\,\hat\imath+15{,}0\hat\jmath)\,\mbf{km/s}$ y aceleración de $2{,}00\times 10^{12}\,\hat\imath\,\mbf{m/s^2}$, en una región en que existen campos eléctrico y magnético uniformes. Si la aceleración del electrón se mantiene constante y $\vec B=400\,\hat\imath\,\mbf{\mu T}$, obtenga el campo eléctrico en esta región.
  3. Una partícula alfa se mueve con velocidad $\vec v=(14{,}0\,\hat\imath+10{,}5\,\hat k)\times 10^{6}\,\mbf{m/s}$ en una región donde el campo magnético $\vec B=758\,\hat k\,\mbf{mT}$ y el campo eléctrico $\vec E=-5{,}40\,\hat k\,\mbf{kV/m}$ son uniformes.
    Trayectoria en helicoidal de una partícula alfa en un campo electromagnético
    Determine
    1. La magnitud de la fuerza magnética sobre la partícula alfa.
    2. El tiempo que tarda la partícula alfa en completar una vuelta (periodo) y el radio de giro.
    3. La fuerza eléctrica sobre la partícula alfa.
    4. El tiempo que tarda la partícula alfa en detener su avance a lo largo del eje $z$ ¿Cuántos giros realiza antes de detenerse?

    Indicación: Las partículas alfas son núcleos de helio-4 ($\ce{_2^4He^{2+}}$). Su masa es $m_\alpha=6{,}645\times 10^{-27}\,\mbf{kg}$. Por supuesto, su carga es dos veces la carga elemental $q_\alpha=+2e$.

Respuestas

Fuerza Magnética

  1. $v=3{,}94\times 10^5\,\mbf{m/s}=394\,\mbf{km/s}$, $K=1{,}30\times 10^{-16}\,\mbf J=811\,\mbf{eV}$.
  2. $\vec B=0{,}750\,\hat k\,\mbf T=750\,\hat k\,\mbf{mT}$.
  3. Considere un sistema de referencia en que el campo magnético apunta hacia la dirección positiva del eje $z$. En coordenadas cilíndricas
    1. $\vec v=-20{,}7\times 10^6\,\hat\theta\,\mbf{m/s}$.
    2. $\vec B= 477\,\hat k\,\mbf{\mu T}$.
    3. $f=1{,}33\times 10^{7}\,\mbf{Hz}=13{,}3\,\mbf{MHz}$.
    4. $T=7{,}50\times 10^{-8}\,\mbf s=75{,}0\,\mbf{ns}$.
    1. $v=\sqrt{2qV/m}$, hacia la cámara de separación.
    2. $m=\frac{B^2q}{8V}x^2$.
  4. $F_{_M}=27{,}9\,\mbf N$ hacia el oeste.
  5. $\vec F_{_M}=-4{,}1\times 10^{-1}\,\hat k\,\mbf N=-0{,}41\,\hat k\,\mbf{N}$.
    1. $F_{NO}=F_{OM}=21\,\mbf N$, $F_{MN}=30\,\mbf N$.
    2. $F_\text{B}=0{,}0\,\mbf N$.

Fuerza de Lorentz

    1. $v=3{,}41\times 10^3 \mbf{m/s}=3{,}41\,\mbf{km/s}$.
    2. Cualquier combinación en que $\vec v$, $\vec E$ y $\vec B$ formen un sistema de la mano derecha. Podría ser $\vec E=E\,\hat\jmath$ y $\vec B=B\,\hat k$.
  1. $\vec E=(-11{,}4\,\hat\imath+6{,}0\,\hat k)\,\mbf{V/m}$.
    1. $F_B=3{,}40\times 10^{-12}\,\mbf{N}=3{,}40\,\mbf{pN}$.
    2. $T=1{,}72\times 10^{-7}\,\mbf{s}=172\,\mbf{ns}$, $R=0{,}383\,\mbf m=38{,}3\,\mbf{cm}$.
    3. $\vec F_E=-1{,}73\times 10^{-15}\,\hat k\,\mbf N=-1{,}73\,\hat k\,\mbf{fN}$
    4. $\Delta t=4{,}03\times 10^{-5}\,\mbf s=40{,}3\,\mbf{\mu s}$. Realiza poco más de 234 giros.

Comentarios

Publicar un comentario

Entradas populares

Mecánica: Momentum Lineal

En esta guía aplicaremos el teorema del Impulso y el Momentum Lineal y su corolario, la Conservación del Momentum Lineal. Visualización de un evento de colisión registrado por el Experimento ATLAS el 5 de mayo de 2025. Con una energía de $6{,}8\,\mbf{TeV}$ por haz, la imagen representa los primeros haces estables de protones del año 2025 entregados por el Gran Colisionador de Hadrones (LHC) a ATLAS . Los experimentos de física de partículas rutinariamente utilizan la conservación del momentum lineal para reconstruir las colisiones. Créditos: ATLAS Experiment © 2025 CERN bajo licencia CERN Audiovisual Media. Índice Impulso y Momentum Lineal Colisiones Centro de masa Respuestas Impulso y Momentum Lineal Un balón de fútbol de masa $m=450\, \mbf g$, inicialmente en resposo, es pateado por Cristiano Ronaldo ( CR7 ) con máxima potencia de modo que alcanza $119\, \mbf{km/h}$. Determine El momentum del balón tras el disparo. El...

Guía 09: Campo magnético

Es el turno de investigar las fuentes del campo magnético. En esta guía deberás encontrar el campo magnético que generan distintas configuraciones de corrientes eléctricas. Las cargas eléctricas en movimiento generan magnetismo. El mundo moderno está lleno de aplicaciones de este fenómeno como es el caso de los electroimanes, imanes que se pueden manejar a voluntad según la corriente eléctrica que circula por su embobinado. En la imagen se observa un electroiman casero formado por un embobinado en forma de solenoide (el cable enrrollado), un núcleo de hierro (el clavo) utilizado para amplificar el campo magnético, y una fuente de voltaje (la bateria) que establece la corriente en el embobinado. Creditos: Gina Clifford bajo licencia CC BY-SA 2.0 . Índice Campo Magnético Ley de Biot-Savart Ley de Ampère Respuestas Campo Magnético A partir de los siguientes campos magnéticos, determine dónde se ubican y en qué dirección avanzan las corrientes eléctr...

Mecánica: Trabajo y Energía

En esta guía revisaremos aplicaciones del Teorema del trabajo y la energía mecánica. La Blue Fire Megacoaster del Europa-Park en Rust, Alemania es una montaña rusa de acero en que el carro es capaz de alcanzar los $100\,\mbf{km/h}$ desde el reposo en tan solo $2{,}5\,\mbf s$. El movimiento de los carros de montaña rusa suele analizarse con consideraciones de energía. Créditos: Fritz Spitzkohl bajo licencia CC BY-SA 3.0. Índice Trabajo y energía cinética Trabajo y energía mecánica Respuestas Trabajo y energía cinética Un cuerpo de $700\, \mbf{g}$ se desliza $120\, \mbf{cm}$ a lo largo de una mesa horizontal ¿Cuánto cambia la energía cinética del cuerpo si el coeficiente de fricción entre la mesa y el cuerpo es de $0{,}20$? Una masa de $2{,}0\, \mbf{kg}$ cae $400\, \mbf{cm}$ ¿Cuánto trabajo fue realizado sobre la masa por la fuerza de gravedad? Si se trata de una caída libre, es decir, si no hay otras fuerzas que actú...