Ir al contenido principal

Mecánica: Vectores

Coordenadas rectangulares y coordenadas polares

  1. Considere los vectores definidos a continuación. Obtenga sus componentes rectangulares.
    1. $\vec a$ con $a=10$ y $\measuredangle \vec x \vec a=50^\circ$.
    2. $\vec v$ con $v=5{,}0$ y $\measuredangle \vec x \vec v=127^\circ$.
    3. $\vec T$ con $T=12$ y $\measuredangle \vec x \vec T=-75^\circ$.
    4. $\vec N$ con $N=0{,}80$ y $\measuredangle \vec y \vec N=30^\circ$.
    5. $\vec L$ con $L=1{,}70$ y $\measuredangle \vec y \vec L=-155^\circ$.
  2. Obtenga las componentes rectangulares de los siguientes vectores
    1. $\vec A$ con $A=11$ y $\theta=65^\circ$.
      Vector A
    2. $\vec B$ con $B=4{,}5$ y $\theta=25^\circ$.
      Vector B
    3. $\vec g$ con $g=9{,}8\ \mbf{m/s^2}$ y $\theta=30^\circ$.
      Vector g
    4. $\vec L$ con $L=101\ \mbf{kg\,m^2/s}$ y $\theta=45^\circ$.
      Vector L
    5. $\vec p$ con $p=0{,}75\ \mbf{kg\,m/s}$, $\theta=55^\circ$ y $\phi=20^\circ$.
      Vector p
  3. Transforme los siguientes vectores cartesianos a su forma polar
    1. $\vec v=(11\,\hat\imath+12\,\hat\jmath)\ \mbf{m/s}$
    2. $\vec a=(-7{,}3\,\hat\imath-6{,}5\,\hat\jmath)\ \mbf{m/s^2}$
    3. $\vec F=(1{,}3\times 10^3\, \hat\imath-0{,}90 \times 10^3\, \hat\jmath)\ \mbf{N}$
    4. $\vec L=(-0{,}500\,\hat\imath+0{,}866\,\hat\jmath)\ \mbf{kg\, m^2/s}$
    5. $\vec \theta=-8{,}5 \times 10^{-70}\, \hat\imath - 1{,}2 \times 10^{-69}\, \hat\jmath$
    6. $\vec \tau=(-4{,}0\ ,\ -8{,}0)\ \mbf{N\cdot m}$
    7. $\vec V=(2{,}00\ ,\ 321)\ \mbf{m/s}$
    8. $\vec T=(\frac{4}{5}\ ,\ -\frac{3}{5})\ \mbf{N}$
    9. $\vec \mu=(-\frac{5}{13}\ ,\ \frac{12}{13})\ \mbf{J/T}$
    10. $\vec \nu=(12\ ,\ -1{,}0)\ \mbf{Hz}$

Operatoria Vectorial

  1. Sean $\vec A=-5\hat\imath+7\hat\jmath-\hat k$, $\vec B=2\hat\imath+4\hat\jmath-3 \hat k$ y $\vec C=-\hat\imath+\hat\jmath$ tres vectores en el espacio. Calcule las siguientes cantidades e indique si se trata de una magnitud escalar o vectorial.
    1. $-5\vec C$
    2. $\frac{\vec A-\vec C}{5}$
    3. $-\vec C-7\vec B$
    4. $\vec A\cdot\vec B$
    5. $\left(-\vec A\right)\cdot\left(2\vec C\right)$
    6. $\vec A\times\left(2\vec B-3\vec C\right)$
  2. Sean $\vec A=-3\hat\imath+\hat\jmath$, $\vec B=5\hat\imath-2\hat\jmath$ y $\vec C=\hat\imath+\hat\jmath$ vectores en el plano. Calcule el ángulo entre los siguientes vectores. Apoye su respuesta con un sistema coordenado apropiado.
    1. $\vec A$ y $\vec B$
    2. $-2\vec B$ y $-3\vec C$
  3. Sean $\vec \xi=\hat\imath+2\hat\jmath$ y $\vec \chi=2\hat\imath-2\hat\jmath$ vectores en el plano. Calcule las siguientes cantidades.
    1. $\vec \xi \times \vec \chi$
    2. El área del paralelógramo formado por los vectores $\frac{1}{2}\vec\xi$ y $\frac{2}{7}\vec\chi$.

Respuestas

Coordenadas rectangulares y coordenadas polares

    1. $\vec a=6{,}4\,\hat\imath+7{,}7\,\hat\jmath$.
    2. $\vec v=-3{,}0\,\hat\imath+4{,}0\,\hat\jmath$.
    3. $\vec T=3{,}1\,\hat\imath-12\,\hat\jmath$.
    4. $\vec N=-0{,}40\,\hat\imath+0{,}69\,\hat\jmath$.
    5. $\vec L=0{,}718\,\hat\imath-1{,}54\,\hat\jmath$.
    1. $\vec A=-10\,\hat\imath-4{,}6\,\hat\jmath$.
    2. $\vec B=-4{,}1\,\hat\imath+1{,}9\,\hat\jmath$.
    3. $\vec g=(-4{,}9\,\hat\imath-8{,}5\,\hat\jmath)\,\mbf{m/s^2}$.
    4. $\vec L=(-71{,}4\,\hat\imath-71{,}4\,\hat\jmath)\,\mbf{kg\,m^2/s}$.
    5. $\vec p=(0{,}19\,\hat\imath-0{,}72\,\hat\jmath)\,\mbf{kg\,m/s}$.
    1. $\vec v=\left(16\ \mbf{m/s}\ \mb ,\ 47^\circ\right)$.
    2. $\vec a=\left(9{,}8\ \mbf{m/s^2}\ \mb ,\ 222^\circ\right)$.
    3. $\vec F=\left(1{,}6\times 10^3\ \mbf{N}\ \mb ,\ 325^\circ\right)$.
    4. $\vec L=\left(1{,}00\ \mbf{kg\,m^2/s}\ \mb ,\ 120^\circ\right)$.
    5. $\vec \theta=\left(1{,}5\times 10^{-69}\ \mb ,\ 235^\circ\right)$.
    6. $\vec \tau=\left(8{,}9\ \mbf{N\cdot m}\ \mb ,\ 243^\circ\right)$.
    7. $\vec V=\left(321\ \mbf{m/s}\ \mb ,\ 89{,}6^\circ\right)$.
    8. $\vec T=\left(1\ \mbf{N}\ \mb ,\ 323^\circ\right)$.
    9. $\vec \mu=\left(1\ \mbf{J/T}\ \mb ,\ 113^\circ\right)$.
    10. $\vec \nu=\left(12\ \mbf{Hz} ,\ 355^\circ\right)$.

Operatoria Vectorial

    1. $5\,\hat\imath-5\,\hat\jmath$. Vectorial.
    2. $-\frac{4}{5}\,\hat\imath+\frac{6}{5}\,\hat\jmath-\frac{1}{5}\hat k$. Vectorial.
    3. $-13\,\hat\imath-29\,\hat\jmath+21\,\hat k$. Vectorial.
    4. $21$. Escalar.
    5. $-24$. Escalar.
    6. $-47\,\hat\imath-37\,\hat\jmath-24\,\hat k$. Vectorial.
    1. $177^\circ$.
    2. $67^\circ$.
    1. $\vec \xi\times\vec \chi=-6\,\hat k$.
    2. $A=\frac{6}{7}$.

Comentarios

Entradas populares

Guía 09: Ecuación de Bernoulli con bombas y turbinas

A continuación utilizarás la ecuación de Bernoulli generalizada para considerar bombas y turbinas. Deberás relacionar las alturas, rapideces, presiones de un fluido (líquido) en movimiento con las potencias suministradas y retiradas por las bombas y turbinas. Las bombas y turbinas son dispositivos indispensables para la vida moderna. Por un lado, las bombas se utilizan para proporcionar energía a un fluido para que alcance mayor altura, mayor velocidad o aumente su presión. Por otro lado, las turbinas extraen energía del fluido para convertirla en energía mecánica que después puede ser transformada en otras formas como la electricidad. La imagen muestra el reemplazo de algunas de las turbinas Pelton de la Central de generación hidroléctrica Walchensee (Baviera, Alemania) que es capaz de producir $124\,\mt{MW}$ de potencia eléctrica. Creditos: Voith Siemens Hydro Power bajo licencia CC BY-SA 3.0 . Índice Bombas y turbinas Constantes, datos y factores de conversi

Guía 10: Análisis Dimensional

A continuación aplicarás el análisis dimensional de magnitudes físicas para encontrar la forma funcional que relaciona los adimensionales de un fenómeno físico. Deberás encontrar y relacionar las magnitudes adimensionales de las que puede depender un fenómeno físico. Prueba del modelo a escala !/48 de un jet F-18 en el agua. Modelos pequeños a bajas velocidades de entrada en agua pueden alcanzar los mismos números de Reynolds que los aviones en el aire. Esto permite que se puedan hacer pruebas realistas y económicas del comportamiento del jet. Creditos: NASA imagen del Dominio Público. . Índice Teorema Pi de Buckingham Respuestas Teorema Pi de Buckingham Arregle los siguientes grupos en parámetros adimensionales. $\Delta p$, $\rho$, $v$. $\rho$, $g$, $v$, $F$. $\mu$, $F$, $\Delta p$, $t$. Considere las siguientes variables de mecánica de fluidos: el caudal $Q$, el diámetro $D$, la diferencia de altura $\Delta

Guía 11: Ecuación de Bernoulli con pérdidas

A continuación utilizarás la ecuación de Bernoulli generalizada para considerar, además de bombas y turbinas, las pérdidas de energía debido a la fricción del flujo con la tubería y a los accesorios como válvulas y codos, entre otros. Deberás relacionar las alturas, rapideces, presiones de un fluido (líquido) en movimiento con las pérdidas en un sistema de tuberías Los sistemas de tuberías están presente en un amplio rango de industrias que requieren sistemas de transporte o circulación de fluidos. Algunos ejemplos son las industrias (petro)química, minera, de climatización, del agua potable, etc. La imagen muestra una sección del Oleoducto Trans-Alaska que se extiende por casi $1\,300\,\mt{km}$ atravesando Alaska de Norte a Sur. El sistema cuenta con 11 estaciones de bombeo y miles de tuberías alimentadoras a lo largo de toda su extensión. Creditos: Luca Galuzzi - www.galuzzi.it bajo licencia CC BY-SA 2.5 . Índice Conceptos básicos Pérdidas regulares Pérdida