Ir al contenido principal

Mecánica: Movimiento Rectilíneo Acelerado

Movimiento Rectilíneo Acelerado

Movimiento Rectilíneo Acelerado

  1. Un vehículo lleva una velocidad de $72\ \mbf{km/h}$ y se encuentra con un muro a $50\ \mbf{m}$. Si frena con una aceleración constante de $2{,}0\ \mbf{m/s^2}$ ¿Logra detenerse antes de chocar?
  2. Un tren se desplaza por una vía recta. En cierto instante de tiempo se mueve con velocidad de $36\ \mbf{km/h}$. Un observador que va en la cabina de mando comprueba que cada $20\ \mbf s$ el tren aumenta su velocidad en $18\ \mbf{km/h}$.
    1. Calcule la aceleración del tren.
    2. Escriba la ecuación de la velocidad.
    3. Calcule la velocidad del tren tras $110\ \mbf s$.
  3. Un automóvil está parado en un semáforo. Cuando se enciende la luz verde arranca con aceleración constante de $2{,}0\ \mbf{ m/s^2}$. En el momento de arranca el auto, un camión con velocidad constante de $54\ \mbf{km/h}$ lo adelanta.
    1. ¿Cuánto tiempo transcurre hasta que el auto adelanta al camión?
    2. ¿A qué distancia del semáforo lo alcanza?
    3. ¿Qué velocidad lleva el auto en ese momento?
  4. En un cruce existe una señalética que indica que el límite de velocidad es $40\ \mbf{km/h}$. Una camioneta pasa por el cruce a una velocidad de $72\ \mbf{km/h}$, que mantiene constante. En ese momento arranca desde el cruce una moto de la policía en la misma dirección y sentido, alcanzando una velocidad de $108\ \mbf{km/h}$ en $10\ \mbf s$. El motorista mantienene constante esta velocidad.
    1. ¿Cuánto tarda la moto en alcanzar a la camioneta?
    2. Respecto del cruce ¿A qué distancia alcanza el policía a la camioneta?
    3. Si a los $100\ \mbf m$ desde que ocurre el alcance se detienen ambos vehículos ¿Cuál ha sido la aceleración de cada uno?
  5. Considere el siguiente gráfico de la velocidad en función del tiempo de una partícula que se mueve a lo largo del eje $y$ Vector A
    1. Determine $v(t)$.
    2. Encuentre $a(t)$.
    3. Si en $t=0{,}0\ \mbf{s}$ la posición es $y=5{,}0\ \mbf{m}$, obtenga la posición como función del tiempo.
    4. Esboce el gráfico posición versus tiempo.

    Indicación: Utilice funciones definidas por tramo.

  6. Considere el siguiente gráfico de la aceleración en función del tiempo de una partícula que se mueve a lo largo del eje $z$ Vector A
    1. Considere que la velocidad en $t=5{,}0\ \mbf{s}$ es $v=-18\ \mbf{m/s}$. Encuentre la velocidad como función del tiempo y esboce la respectiva gráfica.
    2. Si en $t=10\ \mbf{s}$ la posición es $z=0{,}0\ \mbf{m}$, obtenga la posición como función del tiempo.
    3. Esboce el gráfico posición versus tiempo.

    Indicación: Utilice funciones definidas por tramo.

Caída Libre Unidimensional

  1. Se lanza una pelota verticalmente hacia arriba con una velocidad de $20\ \mbf{m/s}$. Calcule el tiempo que tarda en volver al suelo.
  2. Un globo se está elevando a $2{,}0\ \mbf{m/s}$ . Cuando el globo se encuentra a $50\ \mbf m$ de altitud se deja caer una piedra. Determine
    1. La velocidad inicial de la piedra.
    2. El tiempo que tarda en llegar al suelo.
    3. La velocidad con que llega la piedra al suelo.
  3. Se lanza verticalmente hacia arriba desde el suelo, un cuerpo con velocidad inicial de $15\ \mbf{m/s}$. Despreciando la acción del aire, obtenga
    1. La altura máxima alcanzada.
    2. El tiempo que tarda en subir.
  4. Desde una altura de $80\ \mbf m$ se deja caer una piedra. Dos segundos después se lanza otra desde el suelo en la misma vertical con una velocidad de $50\ \mbf{m/s}$. Determine
    1. El instante de tiempo en que se encuentran las piedras.
    2. La altura a la que se produce el encuentro.
  5. Se dispara verticalmente hacia arriba un proyectil con una velocidad de $200\ \mbf{m/s}$, al cabo de $4{,}00\ \mbf s$, se lanza un segundo proyectil con la misma velocidad. Calcule
    1. La altura a la que se encuentran.
    2. El tiempo que tardan en encontrarse.
    3. La velocidad de cada proyectil en el momento en que se encuentran.

Respuestas

Movimiento Rectilíneo Acelerado

  1. No. Se detendría $50\ \mbf m$ más allá del muro.
  2. Si el tren avanza en la dirección positiva del eje $x$
    1. $\vec a=0{,}25\,\hat\imath\ \mbf{m/s^2}$.
    2. $\vec v(t)=(10+0{,}25\,t)\,\hat\imath\ \mbf{m/s}$
    3. $\vec v(t=110\ \mbf{s})=38\,\hat\imath\, \mbf{m/s}$
    1. Transcurren $15\ \mbf s$.
    2. A $2{,}2\times 10^2\ \mbf m$ ($225\ \mbf m$) del semáforo.
    3. $v=30\ \mbf {m/s}$ hacia adelante.
    1. Tarda $15\ \mbf s$.
    2. $3{,}0\times 10^2\ \mbf{m}$ ($300\ \mbf m$) más adelante del cruce.
    3. $a_c=-2{,}0\ \mbf{m/s^2}$ y $a_m=-4{,}5\ \mbf{m/s^2}$.
    1. $$v(t)=\left\{\begin{array}{l} 4{,}0\ \mbf{m/s}&\text{si, } 0{,}0\leq t\leq 3{,}0\ \mbf s\\ \Bigl(4{,}0-0{,}86(t-3{,}0)\Bigr)\ \mbf{m/s}&,\ \text{si } 3{,}0< t\leq 10{,}0\ \mbf s\\ -2{,}0\ \mbf{m/s}&\text{si, } 10{,}0< t\leq 20{,}0\ \mbf s \end{array}\right.$$
    2. $$a(t)=\left\{\begin{array}{l} 0{,}0\ \mbf{\frac{m}{s^2}}& ,\ \text{si } 0{,}0\leq t\leq 3{,}0\ \mbf s\\ -0{,}86\ \mbf{\frac{m}{s^2}}& ,\ \text{si } 3{,}0< t\leq 10{,}0\ \mbf s\\ 0{,}0\ \mbf{\frac{m}{s^2}}& ,\ \text{si } 10{,}0< t\leq 20{,}0\ \mbf s \end{array}\right.$$
    3. $$y(t)=\left\{\begin{array}{l} \Bigl(5{,}0+4{,}0\,t\Bigr)\ \mbf{m}&,\ \text{si } 0{,}0\leq t\leq 3{,}0\ \mbf s\\ \Bigl(17+4{,}0(t-3{,}0)-0{,}43(t-3{,}0)^2\Bigr)\ \mbf{m}&,\ \text{si } 3{,}0< t\leq 10{,}0\ \mbf s\\ \Bigl(24-2{,}0(t-10{,}0)\Bigr)\ \mbf{m}&,\ \text{si } 10{,}0< t\leq 20{,}0\ \mbf s \end{array}\right.$$
    4. Vector A
    1. $$v(t)=\left\{\begin{array}{l} \Bigl(-18-3{,}0(t-3{,}0)\Bigr)\ \mbf{m/s}&,\ \text{si } 0{,}0\leq t\leq 3{,}0\ \mbf s\\ -18\ \mbf{m/s}&,\ \text{si } 3{,}0< t\leq 12{,}0\ \mbf s\\ \Bigl(-18+2{,}0(t-12{,}0)\Bigr)\ \mbf{m/s}&,\ \text{si } 12{,}0< t\leq 19{,}0\ \mbf s \end{array}\right.$$ Vector A
    2. $$z(t)=\left\{\begin{array}{l} \Bigl(126-18(t-3{,}0)-1{,}5(t-3{,}0)^2\Bigr)\ \mbf{m}&,\ \text{si } 0{,}0\leq t\leq 3{,}0\ \mbf s\\ -18(t-10{,}0)\ \mbf{m}&,\ \text{si } 3{,}0< t\leq 12{,}0\ \mbf s\\ \Bigl(-36-18(t-12{,}0)+(t-12{,}0)^2\Bigr)\ \mbf{m}&,\ \text{si } 12{,}0< t\leq 19{,}0\ \mbf s \end{array}\right.$$ Vector A

Caída Libre Unidimensional

  1. $t=4{,}1\ \mbf s$
  2. Con un eje vertical hacia arriba
    1. $\vec v_0=2{,}0\,\hat\jmath\ \mbf{m/s}$.
    2. $t=3{,}4\ \mbf s$.
    3. $\vec v_\text{suelo}=-31\,\hat\jmath\ \mbf{m/s}$.
    1. $h_\text{max}=11\ \mbf{m}$.
    2. $t=1{,}5\ \mbf s$.
    1. $t=2{,}9\ \mbf s$.
    2. $h_\text{encuentro}=40\ \mbf{m}$.
  3. Con un eje vertical hacia arriba
    1. $h_\text{encuentro}=2{,}02\ \mbf{km}$.
    2. $t=22{,}4\ \mbf s$.
    3. $\vec v_1=-19{,}5\,\hat\jmath\ \mbf{m/s}$ y $\vec v_2=19{,}7\,\hat\jmath\ \mbf{m/s}$

Comentarios

Entradas populares

Mecánica: Momentum Lineal

En esta guía aplicaremos el teorema del Impulso y el Momentum Lineal y su corolario, la Conservación del Momentum Lineal. Visualización de un evento de colisión registrado por el Experimento ATLAS el 5 de mayo de 2025. Con una energía de $6{,}8\,\mbf{TeV}$ por haz, la imagen representa los primeros haces estables de protones del año 2025 entregados por el Gran Colisionador de Hadrones (LHC) a ATLAS . Los experimentos de física de partículas rutinariamente utilizan la conservación del momentum lineal para reconstruir las colisiones. Créditos: ATLAS Experiment © 2025 CERN bajo licencia CERN Audiovisual Media. Índice Impulso y Momentum Lineal Colisiones Centro de masa Respuestas Impulso y Momentum Lineal Un balón de fútbol de masa $m=450\, \mbf g$, inicialmente en resposo, es pateado por Cristiano Ronaldo ( CR7 ) con máxima potencia de modo que alcanza $119\, \mbf{km/h}$. Determine El momentum del balón tras el disparo. El...

Guía 09: Campo magnético

Es el turno de investigar las fuentes del campo magnético. En esta guía deberás encontrar el campo magnético que generan distintas configuraciones de corrientes eléctricas. Las cargas eléctricas en movimiento generan magnetismo. El mundo moderno está lleno de aplicaciones de este fenómeno como es el caso de los electroimanes, imanes que se pueden manejar a voluntad según la corriente eléctrica que circula por su embobinado. En la imagen se observa un electroiman casero formado por un embobinado en forma de solenoide (el cable enrrollado), un núcleo de hierro (el clavo) utilizado para amplificar el campo magnético, y una fuente de voltaje (la bateria) que establece la corriente en el embobinado. Creditos: Gina Clifford bajo licencia CC BY-SA 2.0 . Índice Campo Magnético Ley de Biot-Savart Ley de Ampère Respuestas Campo Magnético A partir de los siguientes campos magnéticos, determine dónde se ubican y en qué dirección avanzan las corrientes eléctr...

Mecánica: Trabajo y Energía

En esta guía revisaremos aplicaciones del Teorema del trabajo y la energía mecánica. La Blue Fire Megacoaster del Europa-Park en Rust, Alemania es una montaña rusa de acero en que el carro es capaz de alcanzar los $100\,\mbf{km/h}$ desde el reposo en tan solo $2{,}5\,\mbf s$. El movimiento de los carros de montaña rusa suele analizarse con consideraciones de energía. Créditos: Fritz Spitzkohl bajo licencia CC BY-SA 3.0. Índice Trabajo y energía cinética Trabajo y energía mecánica Respuestas Trabajo y energía cinética Un cuerpo de $700\, \mbf{g}$ se desliza $120\, \mbf{cm}$ a lo largo de una mesa horizontal ¿Cuánto cambia la energía cinética del cuerpo si el coeficiente de fricción entre la mesa y el cuerpo es de $0{,}20$? Una masa de $2{,}0\, \mbf{kg}$ cae $400\, \mbf{cm}$ ¿Cuánto trabajo fue realizado sobre la masa por la fuerza de gravedad? Si se trata de una caída libre, es decir, si no hay otras fuerzas que actú...