Ir al contenido principal

Termodinámica: Energía interna y entalpía

Energía interna y Entalpía

  1. Se utilizan $2{,}0\ \mt{kcal}$ para calentar $600\ \mt{g}$ de una sustancia líquida desconocida desde $15^{\circ}\mt C$ a $40^{\circ}\mt{C}$ ¿Cuál es el calor específico de la sustancia? Suponga que la capacidad calorífica permanece constante.
  2. Dos moles de un gas ideal monoatómico a una presión de $5.0\ \mt{atm}$, se comprimen isotérmicamente desde $60\ \mt{l}$ hasta $20\ \mt{l}$. Luego, se expanden isobáricamente hasta los $60\ \mt{l}$ originales. Obtenga
    1. Dibuje en un diagrama de Clapeyron ($p$ v/s $V$) los estados y los procesos en cuestión.
    2. Las coordenadas termodinámicas ($p,V,T$) de los tres estados.
    3. La variación de la energía interna y la variación de la entalpía en cada uno de los procesos.
    4. El trabajo y el calor en cada proceso.
  3. Una libra-mol de oxígeno ($\ce{O_2}$) se calienta a presión constante comenzando a $32{,}0^\circ\mt{F}$. Determine
    1. La cantidad de energía calórica que debe proporcionarse al gas para duplicar su volumen.
    2. El cambio de entalpía durante el proceso.

    Indicación: Se trata de un gas diatómico.

  4. Cuatro moles de gas nitrógeno ($\ce{N_2}$) a $27^\circ\mt{C}$ y $10\ \mt{atm}$ se expanden hasta alcanzar un volumen de $24{,}6\ \mt{l}$. Obtenga el trabajo, el calor, el cambio de energía interna y el cambio de entalpía si el proceso es:
    1. Reversible e isotérmico.
    2. Isotérmico contra una presión constante de $1{,}0\ \mt{atm}$.
    3. Adiabático contra una presión constante de $1{,}0\ \mt{atm}$.

Aplicaciones de la Primera Ley de la Termodinámica

  1. ¿Cuál es la temperatura final de equilibrio cuando $0{,}020\ \mt{lb}$ de leche a $50^{\circ}\mt{F}$ se agregan a $0{,}320\ \mt{lb}$ de café a $194^{\circ}\mt{F}$? Suponga que la capacidad calorífica específica de la leche es $6/5$ la capacidad calorífica del agua mientras la capacidad calorífica del café es igual a la del agua. También desprecie la capacidad calorífica del recipiente.
  2. Un termómetro de masa $0{,}055\ \mt{kg}$ y de calor específico $0{,}20\ \mt{kcal/kg^{\circ}C}$ marca $15{,}0^{\circ}\mt{C}$. Se introduce en $0{,}300\ \mt{kg}$ de agua y alcanza la misma temperatura final del agua. Si el termómetro marca $44{,}4^{\circ}\mt{C}$ y es exacto ¿Cuál era la temperatura del agua antes de introducir el termómetro, despreciando otras pérdidas de calor?

    Indicación: En muchas áreas de la ingeniería se denomina calor específico a la capacidad calorífica específica.

  3. Un vaso abierto contiene $500\ \mt{g}$ de hielo a $-20^{\circ}\mt{C}$. Puede despreciarse la capacidad calorífica del recipiente. Se suministra calor al vaso en proporción constante de $1000\ \mt{cal/min}$ durante $100\ \mt{min}$.
    1. ¿Qué tipo de proceso realiza el hielo-agua durante los $100\ \mt{min}$? ¿Isocórico? ¿Isóbarico? ¿Adiabático? etc.
    2. Determine el calor necesario para elevar la temperatura del hielo hasta $0^{\circ}\mt{C}$ ¿Cuánto tiempo tardó este proceso?
    3. Determine el calor necesario para transformar todo el hielo en agua ¿Cuánto tiempo tardó este proceso?
    4. Determine la temperatura que alcanza el $\ce{H_2O}$ tras los $100\ \mt{min}$
    5. Construya un gráfico temperatura versus tiempo para el sistema.
  4. Se calientan balines de cobre, cada uno con una masa de $2{,}2\times 10^{-3}\ \mt{lb}$, a una temperatura de $100^{\circ}\mt{C}$. ¿Cuántos balines se deben agregar a $1{,}1\ \mt{lb}$ de agua inicialmente a $20^{\circ}\mt{C}$ para que la temperatura final de equilibrio sea de $25^{\circ}\mt{C}$?
  5. Calcule la diferencia de calor desprendido al quemar propano ($\ce{C3H8}(g)$) y butano ($\ce{C4H10}(g)$) en el estado estándar ($25^\circ\mt{C}$ y $1{,}00\ \mt{atm}$)
    1. Diez gramos de cada uno de estos gases.
    2. Diez litros de cada uno de estos gases.
  6. Los quemadores de una cocina doméstica usan gas licuado para calentar el agua con que se preparan los alimentos. Si el gas licuado es en su totalidad butano ($\ce{C_4H_10}(g)$)
    1. Determine el calor de combustión específico del $\ce{C_4H_10}(g)$ a $8{,}0^\circ\mt{C}$ y $1{,}0\ \mt{atm}$.
    2. Suponiendo que no hay perdidas de calor, calcule la masa de gas que debe quemar la cocina para calentar $2{,}0\ \mt{kg}$ de agua a $5{,}0^\circ\mt{C}$ hasta $100^ \circ \mt{C}$ si la temperatura ambiente es $8{,}0^\circ\mt{C}$.
  7. La entalpía de $5{,}00\ \mt{lb}$ de una mezcla bifásica de agua con su vapor a $600^\circ \mt{F}$ es de $3{,}80\times 10^3\ \mt{BTU}$. Obtenga
    1. El título de la mezcla.
    2. El volumen específico de la mezcla.
    3. La energía interna de la mezcla.
    4. La masa de agua líquida.
  8. Hallar el calor de vaporización específico del agua a $248^\circ\mt{F}$ y $1{,}00\ \mt{atm}$ de presión.

    Indicación: Por supuesto, se trata de la entalpía de vaporización específica Es el calor necesario para evaporar una unidad de masa de una sustancia líquida a presión y temperatura especificada. No confundir con la entalpía de ebullición específica que es el calor necesario para ebullir una unidad de masa a la temperatura y presión de saturación .

  9. Una mezcla de $1{,}0\ \mt{kmol}$ de gas natural (metano $\ce{CH_4}(g)$) y oxígeno ($\ce{O_2}(g)$) en proporción estequiométrica inicialmente a $25^\circ\mt{C}$ y $1{,}0\ \mt{atm}$ se quema completamente en un recipiente cerrado y rígido. Tras la reacción los productos alcanzan una temperatura de $900^\circ\mt{C}$.
    1. Escriba la ecuación de la reacción.
    2. ¿Qué tipo de proceso ocurrió?
    3. Determine el calor y el trabajo transferido por el sistema (mezcla en quema).
    4. Obtenga la presión final en el recipiente.

    Indicación: La combustión se lleva a cabo con las cantidades precisas que demanda la ecuación de la reacción.


Constantes, datos y factores de conversión

  • Aceleración de gravedad estándar
    $g=9{,}81\,\mt{m/s^2}= 32{,}2\,\mt{ft/s^2}$.
  • Presión atmosférica estándar
    $p_\text{atm}\equiv 1\,\mt{atm}\equiv 101\,325\,\mt{Pa}=2\,116{,}2\,\mt{lb/ft^2}=14{,}696\ \mt{psi}.$
  • Temperatura del cero absoluto
    $T_{0\,\mt K}\equiv 0\ \mt K\equiv 0\ \mt R\equiv -273{,}15^\circ\mt{C}\equiv -459{,}67^\circ\mt{F}.$
  • Constante Universal de los gases
    $R=8{,}314\ \mt{\frac{Pa\cdot m^3}{mol\cdot K}}=1\,545\ \mt{\frac{ft\cdot lb_f}{lbmol\cdot R}}$
  • Masa atómica del oxígeno $\ce{O}$
    $M_{_{\ce{O}}}=16{,}00\ \mt{g}$.
  • Masa atómica del hidrógeno $\ce{H}$
    $M_{\ce{H}}=1{,}008\ \mt{g/mol}$.
  • Masa atómica del carbono $\ce{C}$
    $M_{\ce{C}}=12{,}01\ \mt{g/mol}$.
  • Capacidades caloríficas molares de los gases ideales monoatómicos
    $\bar{c}_{_V}=\frac{3}{2}R\quad,\quad \bar{c}_{_P}=\bar{c}_{_V}+R=\frac{5}{2}R$.
  • Capacidades caloríficas molares de los gases ideales diatómicos
    $\bar{c}_{_V}=\frac{5}{2}R\quad,\quad \bar{c}_{_P}=\bar{c}_{_V}+R=\frac{7}{2}R$.
  • Agua a $1{,}00\ \mt{atm}$
    1. Capacidad calorífica específica del hielo
      $c(s)=0{,}50\ \mt{\frac{cal}{g\ ^{\circ}C}}=0{,}50\ \mt{\frac{BTU}{lb_m\ ^{\circ}F}}$.
    2. Capacidad calorífica específica del agua líquida
      $c(f)=1{,}00\ \mt{\frac{cal}{g\ ^{\circ}C}}=1{,}00\ \mt{\frac{BTU}{lb_m\ ^\circ F}}$.
    3. Capacidad calorífica específica del vapor de agua
      $c(g)=0{,}450\ \mt{\frac{cal}{g\ ^{\circ}C}}=0{,}450\ \mt{\frac{BTU}{lb_m\ ^\circ F}}$.
    4. Entalpía de fusión del agua a $0{,}0^\circ\mt C=32{,}0^\circ \mt{F}$
      $\Delta h_{sf}=80\ \mt{\frac{cal}{g}}=144\ \mt{\frac{BTU}{lb_m}}$.
    5. Entalpía de ebullición del agua a $100^\circ\mt C=212^\circ\mt F$
      $\Delta h_{fg}=540\ \mt{\frac{cal}{g}}=972\ \mt{\frac{BTU}{lb_m}}$.
  • Entalpía de combustión del propano $\ce{C3H8}$
    $\Delta \bar h^\circ_{\ce{C3H8}}=-2{,}877\ \mt{\frac{MJ}{mol}}$.
  • Entalpía de combustión del butano $\ce{C4H10}$
    $\Delta \bar h^\circ_{\ce{C4H10}}=-2{,}219\ \mt{\frac{MJ}{mol}}$.
  • Capacidad calorífica del cobre $\ce{Cu}$
    $c_{_{\ce{Cu}}}=9{,}20\times 10^{-2}\ \mt{\frac{BTU}{lb\ ^\circ F}}$.
  • Tabla de temperaturas USCS del agua saturada
    $T\ ^\circ\mt{F}$ $p_\text{sat}\  \mt{psia}$ $v_f\ \mt{\frac{ft^3}{lb_m}}$ $v_g\ \mt{\frac{ft^3}{lb_m}}$ $h_f\ \mt{\frac{Btu}{lb_m}}$ $h_fg\ \mt{\frac{Btu}{lb_m}}$ $h_g\ \mt{\frac{Btu}{lb_m}}$
    $550$ $1\,044{,}8$ $0{,}021\,76$ $0{,}424\,65$ $549{,}39$ $641{,}47$ $1190{,}9$
    $560$ $1\,132{,}7$ $0{,}022\,07$ $0{,}387\,40$ $562{,}31$ $624{,}91$ $1187{,}2$
    $570$ $1\,226{,}2$ $0{,}022\,42$ $0{,}353\,39$ $575{,}49$ $607{,}55$ $1183{,}0$
    $580$ $1\,325{,}5$ $0{,}022\,79$ $0{,}322\,25$ $588{,}95$ $589{,}29$ $1178{,}2$
    $590$ $1\,430{,}8$ $0{,}023\,19$ $0{,}293\,67$ $602{,}75$ $570{,}04$ $1172{,}8$
    $600$ $1\,542{,}5$ $0{,}023\,62$ $0{,}267\,37$ $616{,}92$ $549{,}67$ $1166{,}6$
    $610$ $1\,660{,}9$ $0{,}024\,11$ $0{,}243\,09$ $631{,}52$ $528{,}03$ $1159{,}5$
    $620$ $1\,786{,}2$ $0{,}024\,64$ $0{,}220\,61$ $646{,}62$ $504{,}92$ $1151{,}5$
    $630$ $1\,918{,}9$ $0{,}025\,24$ $0{,}199\,72$ $662{,}32$ $480{,}07$ $1142{,}4$
    $640$ $2\,059{,}3$ $0{,}025\,93$ $0{,}180\,19$ $678{,}74$ $453{,}14$ $1131{,}9$
  • Capacidades caloríficas y entalpías de formación
    Especie $\bar{c}_p\  \mt{\frac{J}{mol\, K}}$ $\bar{h}^\circ\ \mt{\frac{kJ}{mol}}$
    $\ce{CO2}(g)$ $54{,}4$ $-393{,}5$
    $\ce{H2O}(f)$ $75{,}3$ $-285{,}8$
    $\ce{H2O}(g)$ $40{,}1$ $-241{,}8$
    $\ce{CH4}(g)$ $35{,}7$ $-74{,}8$
    $\ce{O2}(g)$ $24{,}4$ $0{,}0$
  • $1\,\mt{ft}\equiv 30{,}48\,\mt{cm}\equiv 12\,\mt{in}$.
  • $1\,\mt{lb_m}= 453{,}6\,\mt g$.
  • $1\,\mt{lb_f}\equiv 1\,\mt{lb_m}\times g=4{,}45\,\mt N $.
  • $1\,\mt{slug}\equiv 1\,\mt{\frac{lb_f}{ft/s^2}}= 32{,}2\,\mt{lb_m}$.
  • $1\ \mt{bar}\equiv 10^5\ \mt{Pa}=2\,088{,}5\ \mt{lb/ft^2}=14{,}504\ \mt{psi}$.
  • $1\ \mt{cal}\equiv 4{,}184\ \mt{J}$.
  • $1\ \mt{BTU}= 1{,}054\ \mt{kJ}$.
  • $1\ \mt{kWh}\equiv 3{,}6\ \mt{MJ}\equiv 3\,600\ \mt{kJ}$.
  • $1\ \mt{ft\cdot lb}= 1{,}356\ \mt{J}$.

Respuestas

Energía interna y entalpía

  1. $c=0{,}13\ \mt{\frac{cal}{g\ \mt{^\circ C}}} = 0{,}56\ \mt{\frac{J}{g\ \ \mt{^\circ C}}}$.
    1. Diagrama de Clapeyron
      Vector B
    2. Coordenadas termodinámicas
      Estado $p$ $V$ $T$
      $\mt{atm}$ $\mt{l}$ $\mt{K}$
      $a$ $5{,}0$ $60$ $1\,829$
      $b$ $15$ $20$ $1\,829$
      $c$ $15$ $60$ $5\,484$
    3. Variación de energía y entalpía
      Proceso $\Delta U\ \mt{kJ}$ $\Delta H\ \mt{kJ}$
      $a-b$ $0{,}0$ $0{,}0$
      $b-c$ $91{,}2$ $152$
    4. Trabajo y calor
      Proceso $W\ \mt{kJ}$ $Q\ \mt{kJ}$
      $a-b$ $-33{,}4$ $-33{,}4$
      $b-c$ $60{,}8$ $152$
    1. $Q=2{,}66\times 10^6\ \mt{ft\cdot lb}=3{,}42\times 10^3\ \mt{BTU}$
    2. $\Delta H=2{,}66\times 10^6\ \mt{ft\cdot lb}=3{,}42\times 10^3\ \mt{BTU}$
    1. Reversible e isotérmico
      $W\ \mt{kJ}$ $Q\ \mt{kJ}$ $\Delta U\ \mt{kJ}$ $\Delta H\ \mt{kJ}$
      $9{,}1$ $9{,}1$ $0{,}0$ $0{,}0$
    2. Isotérmico con $p=1{,}0\ \mt{atm}$.
      $W\ \mt{kJ}$ $Q\ \mt{kJ}$ $\Delta U\ \mt{kJ}$ $\Delta H\ \mt{kJ}$
      $1{,}5$ $1{,}5$ $0{,}0$ $0{,}0$
    3. Adiabático con $p=1{,}0\ \mt{atm}$.
      $W\ \mt{kJ}$ $Q\ \mt{kJ}$ $\Delta U\ \mt{kJ}$ $\Delta H\ \mt{kJ}$
      $1{,}5$ $0{,}0$ $-1{,}5$ $-2{,}1$

Aplicaciones de la Primera Ley de la Termodinámica

  1. $T=184^\circ\mt{F}=(1{,}8\times 10^2)^\circ\mt{F}$
  2. $T=45{,}5^\circ\mt{C}=45^\circ\mt{C}$
    1. Proceso isobárico.
    2. $Q=5{,}0\ \mt{kJ}$, $\Delta t=5{,}0\ \mt{min}$.
    3. $Q=40\ \mt{kJ}$, $\Delta t=40\ \mt{min}$.
    4. $T=100^\circ\mt{C}$. Alcanza a evaporarse $9{,}3\ \mt{g}$ de agua.
  3. Se necesitan $36$ balines.
    1. El propano entrega $8\ \mt{kJ}$ más que el butano.
    2. El butano entrega $269\ \mt{kJ}$ más que el propano.
    1. $\Delta h^{8{,}0^\circ\mt{C}}_{\ce{C_4H_10}}=-49{,}69\ \mt{\frac{kJ} {g}}$.
    2. $m_{\ce{C_4H_10}}=-16{,}0\ \mt{g}$.
    1. $X=0{,}260=26{,}0\,\%$.
    2. $v=8{,}71\times 10^{-2}\ \mt{ft^3/lb_m}$.
    3. $U=2{,}86\times 10^6\ \mt{ft\cdot lb}=3{,}68\times 10^3\ \mt{BTU}$.
    4. $m_f=3{,}70\ \mt{lb}$.
  4. $\Delta h^{248^\circ\mt{F}}_{fg\ {_{\ce{H_2O}}}}=-992\ \mt{\frac{BTU}{lb_m}}$.
    1. La reacción es $$\ce{CH_4}(g)+2\, \ce{O_2}(g)\longrightarrow 2\,\ce{H_2O}(g)+\ce{CO_2}(g).$$ Nótese que se ha escrito la reacción con el agua en estado gaseoso. Esto facilita los cálculos de las preguntas posteriores.
    2. Proceso isocórico.
    3. $Q=\Delta U_{25^\circ\mt{C}\rightarrow 900^\circ\mt{C}}=-706\ \mt{MJ}$
      $W=0{,}0\ \mt{MJ}$.
    4. $p_f=3{,}93\ \mt{atm}$.

Comentarios

Entradas populares

Mecánica: Momentum Lineal

En esta guía aplicaremos el teorema del Impulso y el Momentum Lineal y su corolario, la Conservación del Momentum Lineal. Visualización de un evento de colisión registrado por el Experimento ATLAS el 5 de mayo de 2025. Con una energía de $6{,}8\,\mbf{TeV}$ por haz, la imagen representa los primeros haces estables de protones del año 2025 entregados por el Gran Colisionador de Hadrones (LHC) a ATLAS . Los experimentos de física de partículas rutinariamente utilizan la conservación del momentum lineal para reconstruir las colisiones. Créditos: ATLAS Experiment © 2025 CERN bajo licencia CERN Audiovisual Media. Índice Impulso y Momentum Lineal Colisiones Centro de masa Respuestas Impulso y Momentum Lineal Un balón de fútbol de masa $m=450\, \mbf g$, inicialmente en resposo, es pateado por Cristiano Ronaldo ( CR7 ) con máxima potencia de modo que alcanza $119\, \mbf{km/h}$. Determine El momentum del balón tras el disparo. El...

Guía 09: Campo magnético

Es el turno de investigar las fuentes del campo magnético. En esta guía deberás encontrar el campo magnético que generan distintas configuraciones de corrientes eléctricas. Las cargas eléctricas en movimiento generan magnetismo. El mundo moderno está lleno de aplicaciones de este fenómeno como es el caso de los electroimanes, imanes que se pueden manejar a voluntad según la corriente eléctrica que circula por su embobinado. En la imagen se observa un electroiman casero formado por un embobinado en forma de solenoide (el cable enrrollado), un núcleo de hierro (el clavo) utilizado para amplificar el campo magnético, y una fuente de voltaje (la bateria) que establece la corriente en el embobinado. Creditos: Gina Clifford bajo licencia CC BY-SA 2.0 . Índice Campo Magnético Ley de Biot-Savart Ley de Ampère Respuestas Campo Magnético A partir de los siguientes campos magnéticos, determine dónde se ubican y en qué dirección avanzan las corrientes eléctr...

Mecánica: Trabajo y Energía

En esta guía revisaremos aplicaciones del Teorema del trabajo y la energía mecánica. La Blue Fire Megacoaster del Europa-Park en Rust, Alemania es una montaña rusa de acero en que el carro es capaz de alcanzar los $100\,\mbf{km/h}$ desde el reposo en tan solo $2{,}5\,\mbf s$. El movimiento de los carros de montaña rusa suele analizarse con consideraciones de energía. Créditos: Fritz Spitzkohl bajo licencia CC BY-SA 3.0. Índice Trabajo y energía cinética Trabajo y energía mecánica Respuestas Trabajo y energía cinética Un cuerpo de $700\, \mbf{g}$ se desliza $120\, \mbf{cm}$ a lo largo de una mesa horizontal ¿Cuánto cambia la energía cinética del cuerpo si el coeficiente de fricción entre la mesa y el cuerpo es de $0{,}20$? Una masa de $2{,}0\, \mbf{kg}$ cae $400\, \mbf{cm}$ ¿Cuánto trabajo fue realizado sobre la masa por la fuerza de gravedad? Si se trata de una caída libre, es decir, si no hay otras fuerzas que actú...