Ir al contenido principal

Guía 03: Ecuación general de la estática de fluidos

A continuación es el turno de resolver problemas sobre la Ecuación general de la estática de fluidos, la ecuación que describe la variación de la presión en un fluido ubicado en una región con campo gravitacional no nulo. Deberás encontrar la presión en fluidos e interfases entre fluidos a distintas profundidades.

Submarino General Carrera (SS-22) de la Armada de Chile
Un submarino es una embarcación diseñada para navegar bajo la superficie del agua. Su casco debe resistir presiones gigantescas producto del aumento de la presión con la profundidad. En la imagen, el Submarino General Carrera (SS-22) de la Armada de Chile.
Creditos: Wikimedia Commons bajo licencia CC BY-SA 4.0.

Presión

  1. Encuentre la presión en un punto ubicado $150\, \mt{m}$ debajo de la superficie del mar. Considere que la densidad del agua de mar es uniforme y de valor igual a $1{,}03\times 10^3\, \mt{kg/m^3}$.
  2. Un experimentador desea determinar la densidad de una muestra de aceite que ha extraído de una planta. Para esto, vierte un poco de agua con colorante en el interior de un tubo en «U», abierto en ambos extremos. El colorante disuelto en el agua es solo para observar claramente el líquido. Después, vierte sobre el agua una pequeña cantidad de la muestra de aceite en el lado derecho del tubo y mide las alturas $h_1$ y $h_2$, según como se muestra en la figura.
    Tubo en U con agua y aceite
    ¿Cuál es la densidad del aceite en términos de la densidad del agua $\rho_{_{\ce{H2O}}}$ y de las alturas $h_1$ y $h_2$?
  3. En unos vasos comunicantes hay agua y xileno ($\ce{C6H4(CH3)2}$). La altura de la columna de agua sobre la interfase con el xileno es $h = 2{,}00\,\mt{cm}$. Calcule
    1. La altura de la columna de xileno $h_\text{x}$.
    2. La altura de la columna de pentano ($\ce{C5H12}$) $h_\text{p}$ que se debe añadir por la rama de agua para que el nivel de ésta sea el mismo a cada lado del tubo.
    Tubo en U con agua, xileno y pentano

    Indicación: Utilice los datos del agua, xileno y pentano dados en la sección de datos.

  4. En el sistema mostrado en la figura, la densidad relativa del aceite es $0{,}900$.
    Depósito con varios fluidos
    Determine la presión en los puntos $A$, $B$, $C$ y $D$.

    Indicación: Aproxime la densidad del agua con su valor a $4{,}0^\circ\mt C$ (ver sección de datos).

  5. El manómetro de la figura, tiene en su bulbo un gas, en sus asas inferiores un líquido de densidad $\rho_l$ y otro gas de densidad $\rho_g$ en sus asas superiores.
    Manómetor de cinco asas
    Obtenga
    1. La presión en $A$.
    2. La presión $p$ del gas en el bulbo.
  6. Dos vasos A y B contienen agua en equilibrio. El vaso A tiene una base de $0{,}300\,\mt{in^2}$ y contiene agua hasta $4{,}00\,\mt{in}$ de altura. El B, tiene una base de $0{,}600\,\mt{in}$ y la altura de agua es de $2{,}00\, \mt{in}$. Determine
    1. La presión debida al peso del agua en cada vaso a $1{,}60\,\mt{in}$ de profundidad.
    2. La presión generada por el agua en el fondo de cada vaso.

    Indicación: Considere agua a $4{,}0^\circ\mt C$.

  7. El tubo de la figura está cerrado por el extremo de la ampolla y abierto en el otro, y tiene mercurio alojado en las dos asas inferiores. Los números indican las alturas en milímetros. Considere que la presión atmosférica es de $760\,\mt{mmHg}$ y desprecie las diferencias de presión con la altura en los cuerpos gaseosos.
    Manómetro de tres asas
    ¿Cuánto vale la presión en el interior de la ampolla del extremo cerrado?

    Indicación: La densidad relativa del mercurio es dada en la sección de datos.

  8. Se presuriza el agua que está en un tanque mediante aire y se mide la presión con un manómetro de fluidos múltiples.
    Deposito de agua presurizado con manómetro de dos asas
    Determine la presión manométrica del aire en el tanque si $h_1 = 0{,}65\,\mt{ft}$, $h_2 =1{,}00\,\mt{ft}$, y $h_3 = 1{,}50\,\mt{ft}$.

    Indicación: Considere que los pesos específicos del agua, mercurio y petróleo (crudo) son $62{,}4\,\mt{lb/ft^3}$, $848\,\mt{lb/ft^3}$ y $52{,}9\,\mt{lb/ft^3}$, respectivamente.

  9. El barómetro de un montañista da una lectura de $930\,\mt{mbar}$ (milibar) al principio de una caminata y de $780\,\mt{mbar}$ al final de ella. Determine la distancia vertical que ha escalado, suponiendo que la densidad promedio del aire es $1{,}20\,\mt{kg/m^3}$ y despreciando el efecto de la altitud sobre la aceleración de gravedad local.
  10. Un gas está contenido en un dispositivo de cilindro y émbolo en posición vertical. El émbolo tiene una masa $m_e=4{,}0\,\mt{kg}$ y un área de la sección transversal $A=35\,\mt{cm^2}$. Un resorte comprimido arriba del émbolo ejerce una fuerza de $60\,\mt N$ sobre éste.
    Pistón con émbolo presionado por resorte
    Si la presión atmosférica es de $95\,\mt{kPa}$, determine la presión en el interior del cilindro.
  11. Considere un tubo en «U» lleno con mercurio ($\ce{Hg}$), excepto la parte de $18.0\,\mbf{cm}$ de alto de arriba. El diámetro de la rama derecha del tubo es $D = 2{,}0\,\mbf{cm}$ y el de la izquierda es el doble del de la derecha.

    Se vierte aceite con densidad relativa de $2{,}72$ en la rama izquierda, forzando a que algo del mercurio de la rama izquierda entre a la derecha.

    Tubo en U con mercurio
    Determine la cantidad máxima de aceite que se puede agregar en la rama izquierda.

    Indicación: Utilice la densidad relativa del mercurio dada en los datos de la guía.


Constantes, datos y factores de conversión

  • Aceleración de gravedad estándar
    $g=9{,}81\,\mt{m/s^2}= 32{,}2\,\mt{ft/s^2}$.
  • Densidad del agua a $4{,}0^{\circ}\mt C$
    $\rho_{_{\ce{H2O}}}^{4{,}0^{\circ}\mt C}=1{,}000\times 10^3\,\mt{kg/m^3}=62{,}4\,\mt{lb_m/ft^3}$.
  • Peso específico del agua a $70{,}0^{\circ}\mt F$
    $\gamma_{_{\ce{H2O}}}^{70{,}0^{\circ}\mt F}=62{,}30\,\mt{lb/ft^3}$.
  • Densidad relativa del alcohol etílico a $20{,}0^{\circ}\mt C$
    $\mt{DR}_{_\mt{etanol}}=0{,}789$.
  • Densidad del aceite de soja a $4{,}0^{\circ}\mt C$
    $\rho_{_\text{aceite}}^{4{,}0^{\circ}\mt C}=930{,}8\,\mt{kg/m^3}$.
  • Densidad relativa del mercurio
    $\text{DR}_{\ce{Hg}}=13{,}59$.
  • Densidad del xileno $\ce{C6H4(CH3)2}$
    $\rho_{_\text{xileno}}=865\ \mt{kg/m^3}$.
  • Peso específico del pentano $\ce{C5H12}$
    $\gamma_{_\text{pentano}}=6{,}14\times 10^3\ \mt{N/m^3}$.
  • Presión atmosférica estándar
    $p_\text{atm}\equiv 1\,\mt{atm}\equiv 101\,325\,\mt{Pa}=2\,116{,}2\,\mt{lb/ft^2}=14{,}696\,\mt{psi}$.
  • $1\,\mt{ft}\equiv 30{,}48\,\mt{cm}\equiv 12\,\mt{in}$.
  • $1\,\mt{lb_f}\equiv 1\,\mt{lb_m}\times g=4{,}448\,\mt N $.
  • $1\,\mt{slug}\equiv 1\,\mt{\frac{lb_f}{ft/s^2}}= 32{,}2\,\mt{lb_m}$.
  • $1\,\mt{lb_m}= 453{,}6\,\mt g$.
  • $1\,\mt{bar}\equiv 10^5\,\mt{Pa}=2\,088{,}5\ \mt{lb/ft^2}=14{,}504\ \mt{psi}$.

Respuestas

Presión

  1. $p_\text{man}=1{,}52\,\mt{MPa}=1{,}52\times 10^6\,\mt{Pa}$, $p=1{,}62\,\mt{MPa}=1{,}62\times 10^6\,\mt{Pa}$
  2. $\rho_\text{aceite}=\rho_{_{\ce{H2O}}}\frac{h_1}{h_2}$.
    1. $h_{\text{x}}=2{,}31\,\mt{cm}$.
    2. $h_{\text{p}}=3{,}19\,\mt{cm}$.
  3. $p_{_A}^\text{vac}=150\,\mt{lb_f/ft^2}$; $p_{_A}=1\,966\,\mt{lb_f/ft^2}$
    $p_{_B}^\text{man}=150\,\mt{lb_f/ft^2}$; $p_{_B}=2\,266\,\mt{lb_f/ft^2}$
    $p_{_C}^\text{man}=150\,\mt{lb_f/ft^2}$; $p_{_C}=2\,266\,\mt{lb_f/ft^2}$
    $p_{_D}^\text{man}=487\,\mt{lb_f/ft^2}$; $p_{_D}=2\,603\,\mt{lb_f/ft^2}$.
    1. $p_{A}^\text{man}=\rho_l\,g h$.
    2. $p_\text{gas}^\text{man}=3\rho_l\,g h$.
    1. $p^\text{man}_\text{A}=p^\text{man}_\text{B}=8{,}32\,\mt{lb_f/ft^2}$.
    2. $p^\text{man}_\text{A}=20{,}8\,\mt{lb_f/ft^2}$ y $p^\text{man}_\text{B}=10{,}4\,\mt{lb_f/ft^2}$.
  4. $p^\text{vac}=110\,\mt{mmHg}=14{,}7\,\mt{kPa}$ y $p=650\,\mt{mmHg}=86{,}7\,\mt{kPa}$.
  5. $p^\text{man}=1{,}18\times 10^3\,\mt{\frac{lb}{ft^2}}=8{,}18\,\mt{psi}$.
  6. $\Delta h=1{,}274\,\mt{m}=1{,}27\,\mt{km}$.
  7. $p_\text{gas}=123\,\mt{kPa}=1{,}23\,\mt{bar}$.
  8. $V=236\,\mt{cm^3}=0.24\,\mt{l}=2{,}4\times 10^{-4}\,\mt{m^3}$.

Comentarios

Publicar un comentario

Entradas populares

Mecánica: Movimiento Parabólico y Movimiento Circunferencial

Índice Movimiento Parabólico Movimiento Circunferencial Respuestas Movimiento Parabólico Un proyectil se lanza con una velocidad de $200\ \mbf{m/s}$ formando un ángulo de $30{,}0^\circ$ con la horizontal. Calcule a los $8{,}0\ \mbf s$ de su lanzamiento: El vector velocidad y el ángulo que forma ésta con el eje vertical . El desplazamiento total. En un duelo del lejano Oeste un pistolero dispara horizontalmente una bala con velocidad de $200\ \mbf{m/s}$ desde una altura de $1{,}25\ \mbf{m}$. Calcule la distancia mínima entre los adversarios, para que la presunta víctima no sea alcanzada. Indicación: La bala realiza movimiento parabólico, de modo que en algún momento choca con el suelo y así el adversario no es alcanzado. Desde una altura de $10\ \mbf m$ sobre el suelo, se lanza horizontalmente un objeto con velocidad de $20\ \mbf{m/s}$. Determinar: La distancia horizontal a la que toc

Mecánica: Leyes de Newton

Índice Fuerza, masa y aceleración Aplicaciones de las leyes de Newton Respuestas Fuerza, masa y aceleración Sobre una masa de $7{,}00\,\mbf{kg}$ se aplican las siguientes fuerzas: una fuerza de $10{,}0\,\mbf N$ hacia el Norte, una fuerza de $20{,}0\,\mbf N$ al Este y una fuerza de $30{,}0\,\mbf N$ en dirección $30^\circ$ al Sur del Oeste. Obtenga la aceleración de esta masa. La aceleración de gravedad en la superficie del Sol, en la superficie de la Luna y en la superficie de Marte es, $27{,}9\, g$, $0{,}160\, g$ y $0{,}380\, g$, respectivamente, donde $g$ es la aceleración de gravedad en la superficie de la Tierra ($g=9{,}8\,\mbf{m/s^2}$). Calcule el peso de una persona cuya masa es $60{,}0\,\mbf{kg}$ en la superficie del Sol, la Luna, Marte y la Tierra. En la superficie de Mercurio la aceleración de gravedad es $4{,}00\,\mbf{m/s^2}$. Si una sonda espacial pesa $500\,\mbf N$ en la superficie de Mercurio, encuentre el pes

Termodinámica: Gases y cambio de fase

Gases y cambio de fase Índice Gases Gases ideales Titulación Constantes, datos y factores de conversión Respuestas Propiedades del agua saturada Tabla de temperaturas SI Tabla de presiones SI Tabla de temperaturas USCS Tabla de presiones USCS Gases Considere un tanque de volumen $V=50{,}0\ \mt{l}$ que contiene $16{,}9\ \mt{kg}$ de argón cuando la temperatura es de $15{,}0^\circ\mt C$. Determine la cantidad de sustancia de argón contenida en el tanque y su volumen molar. Calcule la presión del argón como si fuese un gas ideal. Obtenga la presión utilizando las siguientes ecuaciones de estado. En cada caso ¿Cuál es el valor del factor de compresibilidad? Van der Waals $$\left(p+\frac{a}{{\bar v}^2}\right)(\bar v-b)=RT$$ $a_{_{\ce{Ar}}}=1{,}630\times10^{-2}\ \mt{\frac{Pa\,m^6}{mol^2}}$ $b_{_{\ce{Ar}}}=3{,}201\times10^{-5}\ \mt{\frac{m^3}{mol}}$ Redlich - Kwong $$\left(p+\