Ir al contenido principal

Guía 03: Ley de Gauss

La siguiente es una guía de ejercicios y problemas relacionados a la ley de Gauss. Deberás obtener el flujo eléctrico en algunos sencillos casos, y calcular el campo eléctrico de distribuciones de carga con alta simetría.

Niña en contacto con un generador de Van der Graaff
La cabeza de la niña genera un campo eléctrico a su alrededor producto de la carga recibida del generador de Van der Graaff. Podemos imaginar que el cabello de la niña muestra las líneas de campo eléctrico a su alrededor. Si este fuera el caso, este campo muestra simetría esférica de modo que se puede calcular con la Ley de Gauss.

Flujo eléctrico

  1. En la figura se muestra un agujero de radio $R=0{,}25\,\mbf{m}$ que puede rotar en el espacio y un campo el eléctrico uniforme $\vec E$, de magnitud $E =20\,\mbf{\frac{N}{C}}$ . Si los ángulos son $\alpha=30^\circ$ y $\beta=150^\circ$, determine el flujo eléctrico $\Phi_E$ que atraviesa el agujero en cada situación.
    1. Flujo eléctrico 1
    2. Flujo eléctrico 2
    3. Flujo eléctrico 3
    4. Flujo eléctrico 4
    5. Flujo eléctrico 5
  2. El cubo de arista $a=0{,}20\,\mbf m$ de la figura, está ubicado en una región donde el campo eléctrico es uniforme y cuyo valor es $\vec E=(4{,}0\,\hat\imath+3{,}0\,\hat\jmath)\,\mbf{\frac{N}{C}}$. Determine
    1. El vector normal orientado hacia afuera de cada cara del cubo.
    2. El flujo de campo eléctrico a través de cada cara del cubo.
    3. El flujo eléctrico a través de todo el cubo.
    Flujo eléctrico a través de un cubo
  3. Considere un dipolo eléctrico, es decir, una carga positiva $+q$ ubicada en la posición $\vec r_+=-a/2\,\hat k$ y una segunda carga con la misma magnitud pero de signo opuesto en $\vec r_-=a/2\,\hat k$. Obtenga
    1. El campo eléctrico en todo punto del plano $xy$.
    2. El flujo de campo eléctrico que atraviesa un disco de radio $a$ ubicado en el plano $xy$ centrado en el origen cuyo vector normal es $\hat n=+\hat k$.

    Indicación: En un dipolo eléctrico, el vector que apunta desde la carga negativa a la carga positiva, cuyo módulo es la carga por la distancia de separación se denomina momento dipolar $\vec p$. En este problema $\vec p=-qa\,\hat k$.

Ley de Gauss

  1. Una carga puntual $q=1{,}84\,\mbf{\mu C}$ se ubica en el centro de un cubo cuya arista mide $a=15{,}0\,\mbf{cm}$. Determine
    1. El flujo eléctrico total sobre la superficie del cubo.
    2. El flujo eléctrico a través de cada cara del cubo. Considere la simetría del problema.
  2. Una esfera conductora de radio $r=1{,}22\,\mbf m$ tiene una densidad de carga superficial uniforme $\sigma=8{,}13\,\mbf{\mu C/m^2}$. Determine
    1. La carga en la esfera.
    2. El flujo eléctrico total que sale de la superficie de la esfera.
    3. El campo eléctrico en la superficie de la esfera.
  3. Una esfera conductora de radio $R$ tiene una carga $Q$. Determine el campo eléctrico en el interior y en el exterior de la esfera.
  4. Una esfera sólida dieléctrica (aislante) de radio $R$ tiene una carga $Q$ uniformemente distribuida. Calcule
    1. La densidad volumétrica de carga $\rho$ de la esfera.
    2. El campo eléctrico en la región interior de la esfera.
    3. El campo eléctrico en la región exterior.
  5. Obtenga el campo eléctrico en todo el espacio debido a un plano infinito con densidad superficial de carga uniforme $\sigma$. Considere que el plano cargado se corresponde con el plano $xy$.

    Comentario: Por razones obvias es imposible realizar esta configuración, pero en muchas situaciones, para puntos cerca de la zona central de una placa cargada, ésta es una muy buena aproximación.

  6. Determine el campo eléctrico a una distancia $r$ de un alambre infinito cuya densidad de carga lineal $\lambda$ es uniforme.

    Comentario: En muchas situaciones reales ésta resulta ser una excelente aproximación.

  7. En el origen de un sistema de referencia se ubica una esfera dieléctrica de carga $+q$ y radio $a$. La esfera dieléctrica se encuentra en el interior de una esfera conductora hueca concéntrica de radio interior $b$ y radio exterior $c$. La esfera conductora tiene una carga de $-3q$.
    Esfera dieléctrica en el interior de una esfera hueca conćentrica
    Obtenga
    1. El campo eléctrico en el interior de la esfera dieléctrica ($r \leq a$).
    2. El campo eléctrico entre las esferas ($a < r\leq b$).
    3. El campo eléctrico en la esfera conductora ($b < r\leq c$).
    4. Las cargas que aparecen en la superficie interna y externa de la esfera conductora.
    5. El campo eléctrico fuera de las esferas ($r > c$).
  8. Un condensador cilíndrico está formado por dos cilindros conductores coaxiales de largo $L$, uno interior de radio $a$ y carga $+q$ y el otro exterior de radio $b$ ($a < b$) y de carga opuesta $-q$.
    Condensador cilíndrico
    Considerando que el condensador es «largo» (muy largo), determine
    1. La densidad superficial de carga $\sigma_\text{in}$ y $\sigma_\text{ex}$ de cada cilindro.
    2. El campo eléctrico en el interior del cilindro de radio $a$.
    3. El campo eléctrico entre los cilindros.
    4. El campo eléctrico en la región exterior.

    Indicación: Coaxial, que comparte el mismo eje de simetría.

Respuestas

Flujo eléctrico

    1. $3{,}9\,\mbf{Nm^2/C}$.
    2. $3{,}4\,\mbf{Nm^2/C}$.
    3. $0{,}0\,\mbf{Nm^2/C}$.
    4. $-3{,}4\,\mbf{Nm^2/C}$.
    5. $-3{,}9\,\mbf{Nm^2/C}$.
    1. Para las caras contenidas en los planos $xy$, $yz$ y $zx$ es $\hat n=-\hat k$,$\hat n=-\hat\imath$ y $\hat n=-\hat\jmath$, respectivamente.
      Para las caras paralelas a cada plano (no contenidas), $xy$, $yz$ y $zx$, se tiene $\hat n=\hat k$, $\hat n=\hat\imath$ y $\hat n=\hat\jmath$.
    2. El flujo a través de las caras contenidas en los planos $xy$, $yz$ y $zx$ es $0{,}00\,\mbf{Nm^2/C}$, $-0{,}16\,\mbf{Nm^2/C}$ y $-0{,}12\,\mbf{Nm^2/C}$, respectivamente.
      El flujo a través de las caras paralelas a los planos (no contenidas) $xy$, $yz$ y $zx$ es $0{,}00\,\mbf{Nm^2/C}$, $0{,}16\,\mbf{Nm^2/C}$ y $0{,}12\,\mbf{Nm^2/C}$.
    3. $0{,}00\,\mbf{Nm^2/C}$.
    1. $\vec{E}(x,y)=\frac{1}{4\pi\epsilon_0}\frac{qa\,\hat k}{\left(x^2+y^2+(a/2)^2\right)^{3/2}}$.
    2. $\Phi_E=\frac{q}{\epsilon_0}\left(1-\frac{\sqrt{5}}{5}\right)$.

Ley de Gauss

    1. $\Phi_E=2{,}03\times10^5\,\mbf{Nm^2/C}$.
    2. $\Phi_E=3{,}38\times10^4\,\mbf{Nm^2/C}$.
    1. $Q=1{,}52\,\mbf{\mu C}$.
    2. $\Phi_E=1{,}72\times10^5\,\mbf{Nm^2/C}$.
    3. $E=9{,}20\,\mbf{kN/C}$ radialmente hacia afuera.
  1. $E_\text{int}=0$, $E_\text{ext}=\frac{1}{4\pi\epsilon_0}\frac{Q}{r^2}$ radialmente hacia afuera.
    1. $\rho=\frac{3Q}{4\pi R^3}$.
    2. $E(r < R)=\frac{\rho r}{3\epsilon_0}$ radial hacia afuera.
    3. $E(r\geq R)=\frac{1}{4\pi\epsilon_0}\frac{Q}{r^2}$ radial hacia afuera.
  2. $\vec E=\frac{\sigma}{2\epsilon_0}\,\hat k$.
  3. $E=\frac{\lambda}{2\pi\epsilon_0r}$ alejándose del alambre.
  4. El campo eléctrico es radial
    1. $\vec E(r\leq a)=\frac{+q}{4\pi\epsilon_0 }\frac{r}{R^3}\hat r$.
    2. $\vec E(a < r\leq b)=\frac{+q}{4\pi\epsilon_0 }\frac{1}{r^2}\hat r$.
    3. $\vec E(b < r\leq c)=0$, interior de un conductor.
    4. $q_\text{int}=-q$ y $q_\text{ext}=-2q$.
    5. $\vec E(r > c)=\frac{-2q}{4\pi\epsilon_0 }\frac{1}{r^2}\hat r$.
    1. $\sigma_\text{in}=\frac{q}{2\pi a L}$, $\sigma_\text{ex}=-\frac{q}{2\pi bL}$.
    2. $\vec E(\rho < a)=0$.
    3. $\vec E(a < \rho < b)=\frac{1}{2\pi \epsilon_0}\frac{q}{L\rho }\,\hat \rho$.
    4. $\vec E(\rho > b)=0$.
    donde $\rho$ es la distancia al eje del cilindro.

Comentarios

Entradas populares

Guía 01: Sistemas de unidades, propiedades de los fluidos y viscosidad

Esta es la primera guía de Mecánica de Fluidos. Aquí te presentamos algunos ejercicios de unidades de medidas del «Sistema Inglés» y del SI, algunos ejercicios sobre densidad y peso específico, y algunos problemas de viscosidad. La miel es un fluido con alta viscosidad, de ahí su dificultad para fluir. Creditos: Coralpceb bajo licencia CC BY-NC-SA 2.0 . Índice Sistemas de unidades Propiedades de los fluidos Viscosidad Constantes, datos y factores de conversión Respuestas Sistemas de unidades Exprese las cantidades en las unidades que se indican. $14{,}34\,\mt{ft^2}$ en $\mt{in^2}$, $\mt{mi^2}$ y $\mt{m^2}$. $28{,}0\,\mt{oz}$ en $\mt{lb_m}$, $\mt{slug}$ y $\mt{g}$. $22{,}49\,\mt{lb_f}$ en $\mt{N}$ y $\mt{dyn}$. $1{,}000\,\mt{atm}$ en $\mt{Pa}$, $\mt{bar}$, $\mt{psi}$ y $\mt{psf}$. $1{,}29\,\mt{kg/m^3}$ en $\mt{lb_m/ft^3}$ y $\mt{slug/ft^3}$. $1\,475{,}2\,\mt{ft\cdot lb_f/s}$ en $\mt{W}$ y $\mt{erg/s}$. Transfo...

Guía 04: Fuerzas de los fluidos estáticos sobre superficies planas

Ahora es el turno de resolver problemas que involucren la fuerza de un fluido estático sobre una superficie plana. Deberás calcular la fuerza normal de un fluido, el momento de la fuerza y el centro de presión. Además deberás determinar las condiciones de equilibrio que debe satisfacer una compuerta para permanecer cerrada. Las compuertas de las esclusas de Gatún se abren para un crucero entrante desde el lado del Caribe del canal de Panamá. Estás compuertas deben resistir las fuerzas gigantescas que ejerce el agua contenida en las esclusas. Creditos: Stan Shebs bajo licencia CC BY-SA 3.0 . Índice Fuerzas y momentos Constantes, datos y factores de conversión Respuestas Fuerzas y momentos Determine la fuerza resultante y su punto de aplicación debida a la acción del agua sobre una superficie plana rectangular paralela a la vertical, de altura $AB = 2{,}50\,\mt{m}$ y de ancho $1{,}50\,\mt{m}$, donde el punto $A$, el más cercano a la superficie del...

Guía 03: Ecuación general de la estática de fluidos

A continuación es el turno de resolver problemas sobre la Ecuación general de la estática de fluidos , la ecuación que describe la variación de la presión en un fluido ubicado en una región con campo gravitacional no nulo. Deberás encontrar la presión en fluidos e interfases entre fluidos a distintas profundidades. Un submarino es una embarcación diseñada para navegar bajo la superficie del agua. Su casco debe resistir presiones gigantescas producto del aumento de la presión con la profundidad. En la imagen, el Submarino General Carrera (SS-22) de la Armada de Chile. Creditos: Wikimedia Commons bajo licencia CC BY-SA 4.0 . Índice Presión Constantes, datos y factores de conversión Respuestas Presión Encuentre la presión en un punto ubicado $150\, \mt{m}$ debajo de la superficie del mar. Considere que la densidad del agua de mar es uniforme y de valor igual a $1{,}03\times 10^3\, \mt{kg/m^3}$. Un experimentador desea determinar la densidad de ...