Mis cursos de Física, divulgación científica y más ciencia
Buscar este blog
Guía 03: Ley de Gauss
La siguiente es una guía de ejercicios y problemas relacionados a la ley de Gauss. Deberás obtener el flujo eléctrico en algunos sencillos casos, y calcular el campo eléctrico de distribuciones de carga con alta simetría.
La cabeza de la niña genera un campo eléctrico a su alrededor producto de la carga recibida del generador de Van der Graaff. Podemos imaginar que el cabello de la niña muestra las líneas de campo eléctrico a su alrededor. Si este fuera el caso, este campo muestra simetría esférica de modo que se puede calcular con la Ley de Gauss.
En la figura se muestra un agujero de radio $R=0{,}25\,\mbf{m}$ que puede rotar en el espacio y un campo el eléctrico uniforme $\vec E$, de magnitud $E =20\,\mbf{\frac{N}{C}}$ . Si los ángulos son $\alpha=30^\circ$ y $\beta=150^\circ$, determine el flujo eléctrico $\Phi_E$ que atraviesa el agujero en cada situación.
El cubo de arista $a=0{,}20\,\mbf m$ de la figura, está ubicado en una región donde el campo eléctrico es uniforme y cuyo valor es $\vec E=(4{,}0\,\hat\imath+3{,}0\,\hat\jmath)\,\mbf{\frac{N}{C}}$. Determine
El vector normal orientado hacia afuera de cada cara del cubo.
El flujo de campo eléctrico a través de cada cara del cubo.
El flujo eléctrico a través de todo el cubo.
Considere un dipolo eléctrico, es decir, una carga positiva $+q$ ubicada en la posición $\vec r_+=-a/2\,\hat k$ y una segunda carga con la misma magnitud pero de signo opuesto en $\vec r_-=a/2\,\hat k$. Obtenga
El campo eléctrico en todo punto del plano $xy$.
El flujo de campo eléctrico que atraviesa un disco de radio $a$ ubicado en el plano $xy$ centrado en el origen cuyo vector normal es $\hat n=+\hat k$.
Indicación: En un dipolo eléctrico, el vector que apunta desde la carga negativa a la carga positiva, cuyo módulo es la carga por la distancia de separación se denomina momento dipolar $\vec p$. En este problema $\vec p=-qa\,\hat k$.
Ley de Gauss
Una carga puntual $q=1{,}84\,\mbf{\mu C}$ se ubica en el centro de un cubo cuya arista mide $a=15{,}0\,\mbf{cm}$. Determine
El flujo eléctrico total sobre la superficie del cubo.
El flujo eléctrico a través de cada cara del cubo. Considere la simetría del problema.
Una esfera conductora de radio $r=1{,}22\,\mbf m$ tiene una densidad de carga superficial uniforme $\sigma=8{,}13\,\mbf{\mu C/m^2}$. Determine
La carga en la esfera.
El flujo eléctrico total que sale de la superficie de la esfera.
El campo eléctrico en la superficie de la esfera.
Una esfera conductora de radio $R$ tiene una carga $Q$. Determine el campo eléctrico en el interior y en el exterior de la esfera.
Una esfera sólida dieléctrica (aislante) de radio $R$ tiene una carga $Q$ uniformemente distribuida. Calcule
La densidad volumétrica de carga $\rho$ de la esfera.
El campo eléctrico en la región interior de la esfera.
El campo eléctrico en la región exterior.
Obtenga el campo eléctrico en todo el espacio debido a un plano infinito con densidad superficial de carga uniforme $\sigma$. Considere que el plano cargado se corresponde con el plano $xy$.
Comentario: Por razones obvias es imposible realizar esta configuración, pero en muchas situaciones, para puntos cerca de la zona central de una placa cargada, ésta es una muy buena aproximación.
Determine el campo eléctrico a una distancia $r$ de un alambre infinito cuya densidad de carga lineal $\lambda$ es uniforme.
Comentario: En muchas situaciones reales ésta resulta ser una excelente aproximación.
En el origen de un sistema de referencia se ubica una esfera dieléctrica de carga $+q$ y radio $a$. La esfera dieléctrica se encuentra en el interior de una esfera conductora hueca concéntrica de radio interior $b$ y radio exterior $c$. La esfera conductora tiene una carga de $-3q$.
Obtenga
El campo eléctrico en el interior de la esfera dieléctrica ($r \leq a$).
El campo eléctrico entre las esferas ($a < r\leq b$).
El campo eléctrico en la esfera conductora ($b < r\leq c$).
Las cargas que aparecen en la superficie interna y externa de la esfera conductora.
El campo eléctrico fuera de las esferas ($r > c$).
Un condensador cilíndrico está formado por dos cilindros conductores coaxiales de largo $L$, uno interior de radio $a$ y carga $+q$ y el otro exterior de radio $b$ ($a < b$) y de carga opuesta $-q$.
Considerando que el condensador es «largo» (muy largo), determine
La densidad superficial de carga $\sigma_\text{in}$ y $\sigma_\text{ex}$ de cada cilindro.
El campo eléctrico en el interior del cilindro de radio $a$.
El campo eléctrico entre los cilindros.
El campo eléctrico en la región exterior.
Indicación:Coaxial, que comparte el mismo eje de simetría.
Respuestas
Flujo eléctrico
$3{,}9\,\mbf{Nm^2/C}$.
$3{,}4\,\mbf{Nm^2/C}$.
$0{,}0\,\mbf{Nm^2/C}$.
$-3{,}4\,\mbf{Nm^2/C}$.
$-3{,}9\,\mbf{Nm^2/C}$.
Para las caras contenidas en los planos $xy$, $yz$ y $zx$ es $\hat n=-\hat k$,$\hat n=-\hat\imath$ y $\hat n=-\hat\jmath$, respectivamente.
Para las caras paralelas a cada plano (no contenidas), $xy$, $yz$ y $zx$, se tiene $\hat n=\hat k$, $\hat n=\hat\imath$ y $\hat n=\hat\jmath$.
El flujo a través de las caras contenidas en los planos $xy$, $yz$ y $zx$ es $0{,}00\,\mbf{Nm^2/C}$, $-0{,}16\,\mbf{Nm^2/C}$ y $-0{,}12\,\mbf{Nm^2/C}$, respectivamente.
El flujo a través de las caras paralelas a los planos (no contenidas) $xy$, $yz$ y $zx$ es $0{,}00\,\mbf{Nm^2/C}$, $0{,}16\,\mbf{Nm^2/C}$ y $0{,}12\,\mbf{Nm^2/C}$.
A continuación te presento algunos problemas de fuerzas sobre superficies curvas. Aquí deberás calcular las componentes vertical y horizontal de la fuerza que ejerce fluido y la posición sobre la superficie donde actúa. Superficies curvas son utilizadas generalmente en el diseño de represas principalmente para le generación de energía hidroeléctrica. En la imagen, la (re)presa Hoover situada 48 km al sureste de Las Vegas en el curso del río Colorado, en la frontera entre los estados de Arizona y Nevada (EE.UU.). Creditos: Wikimedia Commons imagen del Dominio Público . Índice Fuerza y centro de presión Constantes, datos y factores de conversión Respuestas Fuerza y centro de presión Una de las paredes de un contenedor de agua se muestra en la figura. La pared es curva con sección transversal de un cuarto de circunferencia de radio $R$ y longitud $L$ ( 1/4 de tubería ). El agua cubre solo la parte curva $AB$ de la pared. En términos...
Ha llegado el turno de resolver algunos problemas de flotación y de la estabilidad de cuerpos flotantes. Aquí calcularás, la fuerza de flotación o fuerza de empuje, el peso aparente de un cuerpo sumergido, la posición del centro de gravedad, la del centro de empuje y la altura metacéntrica. La fuerza de flotación es la responsable de mantener a flote las embarcaciones, mientras que el análisis de estabilidad es indispensable para evitar su volcamiento. En la imagen, el crucero Symphony of the Seas que con sus más de $360\,\mt m$ de eslora (longitud), $66\,\mt{m}$ de manga máxima (ancho) y $72\,\mt{m}$ de calado aéreo (altura sobre la línea de flotación) es el crucero más grande del mundo. Cuenta con 16 cubiertas de pasajeros lo que nos da la imagen de un edificio flotante. Creditos: Darthvadrouw bajo licencia CC BY-SA 4.0 . Índice Fuerza de flotación: empuje Estabilidad de flotación Constantes, datos y factores de conversión Respuestas Fuerza de flotaci...
A continuación utilizarás la ecuación de Bernoulli generalizada para considerar bombas y turbinas. Deberás relacionar las alturas, rapideces, presiones de un fluido (líquido) en movimiento con las potencias suministradas y retiradas por las bombas y turbinas. Las bombas y turbinas son dispositivos indispensables para la vida moderna. Por un lado, las bombas se utilizan para proporcionar energía a un fluido para que alcance mayor altura, mayor velocidad o aumente su presión. Por otro lado, las turbinas extraen energía del fluido para convertirla en energía mecánica que después puede ser transformada en otras formas como la electricidad. La imagen muestra el reemplazo de algunas de las turbinas Pelton de la Central de generación hidroléctrica Walchensee (Baviera, Alemania) que es capaz de producir $124\,\mt{MW}$ de potencia eléctrica. Creditos: Voith Siemens Hydro Power bajo licencia CC BY-SA 3.0 . Índice Bombas y turbinas Constantes, datos y factores de conversi...
Comentarios
Publicar un comentario